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ABSTRACT

The high development cost and low success rate of drug dis-
covery from new compounds highlight the need for methods
to discover alternate therapeutic effects for currently appro-
ved drugs. Computational methods can be effective in focu-
sing efforts for such drug repurposing. In this paper, we pro-
pose a novel drug-target interaction prediction framework
based on probabilistic similarity logic (PSL) [5]. Interacti-
on prediction corresponds to link prediction in a bipartite
network of drug-target interactions extended with a set of
similarities between drugs and between targets. Using pro-
babilistic first-order logic rules in PSL, we show how ru-
les describing link predictions based on triads and tetrads
can effectively make use of a variety of similarity measures.
We learn weights for the rules based on training data, and
report relative importance of each similarity for interacti-
on prediction. We show that the learned rule weights signi-
ficantly improve prediction precision. We evaluate our re-
sults on a dataset of drug-target interactions obtained from
Drugbank [27] augmented with five drug-based and three
target-based similarities. We integrate domain knowledge in
drug-target interaction prediction and match the performan-
ce of the state-of-the-art drug-target interaction prediction
systems [22] with our model using simple triad-based rules.
Furthermore, we apply techniques that make link prediction
in PSL more efficient for drug-target interaction prediction.
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1. INTRODUCTION

The development of drugs based on novel chemistry is a time
consuming and costly procedure. New drugs often take near-
ly a decade to reach market, and the development cost often
reaches two billion US dollars. In addition, most novel drug
candidates fail in or before the clinical trials and will never
get approved. In fact, such failures are so common that the
process is often referred to as the wvalley of death. The cost
of these failures must be borne by the companies involved.
Drugs are organic small molecules that bind to the biomole-
cular targets in order to activate or inhibit their functions.
However, drugs often effect not a single target, but multiple
ones. Polypharmacology, the study of drugs acting on multi-
ple targets, is an area of growing interest [4]. The interactions
with multiple targets can potentially result in adversarial si-
de effects or unintentional treatments.

A potentially effective method to new treatment discovery
is finding new uses for drugs which have already been ap-
proved. Such drug repositioning or repurposing approaches
bypass the need for many tests required for a new therapeu-
tic compound, as they have already been pre-approved and
their safety has already been established. One of the most fa-
mous examples of drug repositioning is Sildenafil which was
originally developed as a treatment for pulmonary arterial
hypertension. During clinical trials it was discovered to have
a side effect potentially treating erectile dysfunction in men.
The drug was repurposed and later renamed as Viagra [8].
The discovery of these new uses by chance highlights the
need for a systematic approach for finding new treatment
effects. However, experimental identification of drug-target
associations is a labor intensive and costly procedure. Hence,
computational prediction methods are promising approaches
for focusing the experimental investigations. They can serve
as a basis for biological investigations and experiments, thus,
reducing the cost and time of new discoveries [13]. Recent
computational approaches for addressing this problem ma-
ke use of networks which describe the relationships among
drugs and targets [29]. Such networks can be constructed via
integration of data from multiple publicly accessible datasets
[18].

In order to predict drug-target interactions, we can construct
a bipartite graph between drugs and targets, where edges de-
note interactions. We can augment the bipartite graph with
drug-drug and target-target similarities. In this graph, simi-
lar drugs tend to interact with the same targets, and similar
targets tend to interact with the same drugs [7]. The si-
milarities between drugs and between targets have different
semantics. For example, drugs can have similarities based



on chemical structure, ligand®, gene expression, side effect
and, annotation [22]. Figure 1 shows a schematic overview
of drug-target interaction network.
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Figure 1: A schematic overview of drug-target inter-
action network, edges between drugs and between
targets represent different similarities.

In this setting, links between drugs and targets indicate their
interactions. Prediction of a new potential drug-target inter-
action can be cast as a link prediction problem. There are
multiple standard link prediction methods established for
networked data [10, 20]. However, traditional link prediction
methods often fail to make use of the multi-relational (i.e.
nodes and edges with different semantics) characteristics of
this drug-target interaction network.

On the other hand, the structure of the network and the
multi-relational aspects of it, makes it challenging to trans-
form into a flat form for input to a standard link prediction
algorithm. Because the links are not independent but depend
on the similarities between their end points and other inter-
actions, a more collective approach is appropriate. Attempts
to convert the data to such flat format and apply traditional
machine learning approaches rely on heuristics such as lear-
ning new combined features [22, 28]. While such methods
may demonstrate good prediction performances, they suffer
from low interpretability, and loss of information.

We propose a drug-target prediction framework based on
Probabilistic Similarity Logic? (PSL) [5] that preforms on
the original data format and captures the multi-relational
nature of the network. We use probabilistic first-order logic
rules in PSL to perform drug-target interaction prediction
based on interpretable domain knowledge. We use rules ba-
sed on triad and tetrad structures, and show that triad-based
rules outperform tetrad-based rules in drug-target interacti-
on prediction. We then use training data to learn weights
for these rules with PSL, improving prediction performance.
Weight learning can also provide insight into relative import-
ance of each similarity for interaction prediction. Further-
more, we apply techniques that make link prediction in PSL
more efficient in drug-target interaction domain. Finally we
match the performance of the state-of-the-art drug-target
interaction prediction approaches using simple triad-based
rules.

2. RELATED WORK

There are multiple approaches for drug-target interaction
prediction. In Similarity Ensemble Approach (SEA), Keiser
et al. [13] predict drug-target interaction based on ligands.
They represent targets with their ligands and consider che-
mical similarities between drugs and ligand sets as indica-
tors for possible interactions. Lamb et al. [16, 17] in CMap

LA substance that binds with a biomolecule to serve a biological
purpose
2 Also referred to as Probabilistic Soft Logic.

represent diseases, genes and drugs with their mRNA ex-
pression profiles. They create gene-expression profiles from
cultured human cells treated with bioactive small molecules,
and compare these expressions only through up and down
regulations, providing possibility of cross-platform compari-
sons. They propose drugs with opposite expression profiles,
as potentially effective on diseases.

Networks of drugs and genetic products are of interest from
multiple perspectives. Cockell et al. [8] describe how to build
an integrated systems biology network for drug repurposing
with elements such as drugs, targets, genes, proteins and pa-
thways. In addition, they indicate that similar targets inter-
act with same drugs and similar drugs tend to interact with
same targets. Lee et al. [18] describe how a network can be
used in tasks such as multi-agent drug development, drug
repurposing, estimation of drug effects on target perturba-
tions in the whole system. They summarize the information
that should be integrated in networks for each task, and list
resources that contain such data.

Yildirim et al. [29] provide an analysis on the drug-target
networks and explain the trends in drug-discovery industry
over time with emphasis on the effect of sequencing genome
on such trends. They also highlight interesting characteri-
stics of drug-target interactions from a network perspective,
including preferential attachment and cluster formations.
There are methods that use one set of similarities for drugs
and targets to predict interactions. Cheng et al. [7] build a
bipartite graph and use similarities between drugs and bet-
ween targets to predict new potential interactions. They use
three link prediction approaches. They use drug-based si-
milarity inference (DBSI), only considering similarities bet-
ween drugs, and target-based similarity inference (TBSI),
only considering target similarities. Furthermore, they pro-
pose network-based inference (NBI), combining both simi-
larities. They calculated 2D chemical similarities with SIM-
COMP for drugs, and Smith-Waterman score genomic se-
quence similarities for targets.

Yamanishi et al. [28] propose three interaction prediction
methods based on using only the nearest neighbor drug or
target, weighted k-nearest neighbors, and space integrati-
on. In the space integration method they describe genomic
space (using Smith—Waterman score) for targets, and che-
mical space (using SIMCOMP) for drugs. They propose a
method to integrate drugs and targets in a unified latent
space called Pharmacological space, and predict interactions
in that space based on proximity of the drugs and targets.
They conduct their experiments on four categories of tar-
gets namely, Enzyme, Ion Channel, GPCR, Nuclear Recep-
tor. They report that two compounds sharing high structure
similarity tend to interact with similar target proteins. Li-
kewise, two target proteins sharing high sequence similarity
tend to interact with similar drugs.

Along this line of work, Bleakley and Yamanishi [3] build
a bipartite drug-target graph inference method with local
models to predict interactions. They model link prediction
in the bipartite graph as two classifications for each drug-
target interaction. Once the classifier treats the drug in each
interaction as the label, and once the target is teated as such.
The predictions acquired from each classifier are combined
in later stages. They use Support Vector Machines (SVM)
with similarity matrices as kernels.

Furthermore, some methods integrate multiples similarities
for the prediction task. Chen et al. [6] develop an statistical



model to assess the association of drug-target pairs based
on their relation with other linked objects. They measure
strength of a relation in the network according to distance,
the number of shortest paths and other topological proper-
ties between the two nodes. They first find the paths between
drugs and targets and assign a score to each path. Then for
every drug-target pair, they integrate scores of all the paths
between them as their final relation score.

Perlman et al. [22] also convert the link prediction problem
into a classification setting, where instances are drug-target
interactions and features are combination of drug-drug and
target-target similarities. They use multiple similarities for
drugs and targets (Five drug-drug and three target-target si-
milarities). They train their classifiers using three online da-
tasets and reserved another dataset for validation. They use
cross validation in their experiments, and consider unobser-
ved interactions as negative samples. They perform under-
sampling to deal with class-imbalanced issue imposed by the
limited number of true interactions among a very large num-
ber of possibilities.

Gottlieb et al. [11] extend this approach to drug-disease rela-
tion prediction. In addition, they propose use of this method
in personalized medicine by representing the disease via its
genetic signature. In such setting, a drug can be recommen-
ded for an unknown disease with just a genetic signature
representation.

3. OUR MODEL

We propose a drug-target prediction framework based on
Probabilistic Similarity Logic (PSL) [5]. In the following sec-
tions, we provide details about PSL and describe the logical
rules that we use for drug-target interaction prediction. We
then describe techniques that help make link prediction in
PSL more efficient.

3.1 Probabilistic Similarity Logic

PSL uses rules written in first-order logic as a template lan-
guage for graphical models over random variables. For ex-
ample, a typical PSL rule looks like the following:

w: P(A,B)ANQ(B,C) — R(A,C) (1)

where P , @Q and R are predicates and A, B, and C are
variables. e.g. P(A, B) can be Interacts(D,T) where D re-
presents a drug and T is a target. Instantiation of predicates
with data is called grounding (e.g. Interacts(acetaminophen,
coz2)). Each ground predicate, often called ground atom has
a soft-truth value in the range of [0, 1]. To build a PSL mo-
del in the drug-target interaction domain, we represent drugs
and targets as variables and specify predicates to represent
different similarities and interactions between them. Domain
knowledge is captured by writing rules that govern the rela-
tionship between these predicates.

Since PSL uses soft-truth values for atoms, some relaxations
from Boolean domain is required to use the first-order lo-
gical representation. PSL uses the Lukasiewicz t-norm and
co-norm to provide a relaxation of the logical connectives,
AND(A), OR(V), and NOT(—) as following:

pAg maz(0, p+q—1)
pVq min(1, p+q)
;p = 1 —p

where ~denotes relaxed form.

An assignment of soft-truth values to a set of ground atoms,
is called an interpretation (I) of that set. In this setting, a
ground instance of a rule r (Tpody — Thead) 1s satisfied (i.e.,
I(r) = 1) when I(rboay) < I(Thead)-

PSL converts these rules into an optimization problem for
Most Probable Ezplanation (MPE) inference, which is fin-
ding the most probable interpretation given evidence (i.e.,
a given partial interpretation). To perform the MPE infe-
rence, PSL calculates a distance to satisfaction value for any
grounded instance of a rule. The rule’s distance to satisfac-
tion under interpretation I is calculated via the following:

dr(I) = maz{0, I(rvoay) — I(Theaa) } (2)

PSL uses the model to define a probability distribution over
interpretations I by combination of the weighted degree of
satisfaction over all rules, as the following;:

7(1) = eap [— > wv-dv-uﬁ 3)

reER

where R is the set of ground rules, w; is the weight of rule r
and Z is the continuous version of the normalization constant
used in discrete Markov random fields:

Z = /Ieasp |:— Zwrdr(l):| (4)

reER

MPE inference in PSL means maximizing the density func-
tion f(I) in Equation (3), subject to both the evidence and
the equality and inequality constraints. For example, given a
drug-target interaction network and interactions between so-
me drugs and some targets, MPE inference derives the most
likely interactions between all other drugs and targets. Fin-
ding the most probable interpretation given a set of weighted
rules reduces to solving a convex optimization problem and
can be solved very efficiently [1].

Every rule in PSL is associated with a weight w. These
weights indicate how much an assignment is penalized if a ru-
le is not satisfied. They are a measure of importance for each
rule. We can set the weights based on prior domain knowled-
ge or, if we have training data, we can learn the weights. One
way to learn the weights is via maximum-likelihood estima-
tion [14]. The gradient of the log-likelihood with respect to
a weight w; is:

aologf (1) = = Y- (@D +E | 3 (de(D))’

TER; reER;

where R; is the set of ground rules parameterized with weight
w;. Bach et al. [2] discuss more advanced methods of weight
learning.

3.2 PSL Model for Drug-Target Interaction

The rules in a PSL program capture domain knowledge about
the task domain. For drug-target interaction prediction, esta-
blished methods are based on triangles or triads between
drugs and targets. Similar targets tend to interact with the
same drug, and similar drugs tend to interact with the same
target [7, 8, 28]. Figure 2 depicts the triad-based prediction
of interaction for drugs and targets.
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Figure 2: Similar targets tend to interact with the
same drug (a), and similar drugs tend to interact
with the same target (b).

The following rules capture the triads shown in Figure 2(a)
and 2(b) respectively:

SimilarTargetg(Th, T2) A Interacts(D,Ts)
— Interacts(D,Th)

(5)

Similar Druga (D1, D2) A Interacts(D2,T)
— Interacts(D1,T)

(6)

where T denotes a target, D indicates a drug, SimilarTargetg
represents a specific target-target similarity metric. For each

similarity metric an instance of the rule (5) is added to the

PSL model. As described in section 4, in our experiments

we include three instances of this rule, such that 8 € {

Sequence-based, PPI-network-based, Gene Ontology-based }.

Similar Druge is a specific drug-drug similarities. In our ex-

periments we include five instances of rule (6), and a € {

Chemical-based, Ligand-based, Expression-based, Side-effect-

based, Annotation-based }.

Figure 3: If two drugs and two targets are similar
correspondingly, and one of the drugs interact with
one of the targets, then other two could also interact
with each other.

In addition to considering such triads, we can consider more
complicated situations in which we reason about both drug
and target similarities for predicting interactions. Figure 3
illustrates this setting. We refer to these rules as tetrad rules:

Similar Druge (D1, D2) A SimilarTargetg(T1,T2)
Nnteracts(D2,T2) — Interacts(D1,T1)

(7)

where « and [ are from the same set of similarities des-
cribed earlier. We include an instance of this rule for every
combination of different target-target and drug-drug simila-
rity metric.

We also include a negative prior indicating that Interacts
predicate is most likely false. In other words, this rule pro-
motes the possibility that drugs and targets do not interact.

The prior rule is simply the following:

—Interacts(D,T) (8)

3.3 Blocking

As PSL grounds every possible rule in the network for each
link prediction, the number of grounded rules can be extre-
mely large. If |D| denote the number of drugs and |a| num-
ber of different similarities between them, and |T'| specify
the number of targets and |3| number of different simila-
rities between targets, for each potential link, O(|D| x |a])
instance of rule (6) and O(]T'| x |8|) instances of rule (5) can
be grounded. For the tetrad rules the situation is even worst.
In addition, since there are O(|D| x |T'|) potential interacti-
ons, the total number of ground rules is O(|D| x |T'| x (|D| x
|a] +|T| x |B])). Running inference on such huge number of
ground rules is computationally very expensive.

To control such situation we limit some of the rules from
being grounded, by reducing the number of tetrads that are
considered for each potential link. To reduce this number we
ignore some of the less significant similarities between drugs
and between targets. More specifically, we reduce |3| and
|a|. This is commonly referred to as blocking [21], and is a
way of limiting the number of links considered. Typically, a
fast method for computing the blocking criterion is used, to
avoid the quadratic blow up.

There are several ways to achieve such goal; one is simply
using a fixed threshold for all similarities and set the values
below that threshold to zero. However, although the simila-
rities are normalized to a [0, 1] range, the distribution of the
values could be highly different such that a fixed threshold
either ignores most of the values in one similarity or inclu-
des most of the values from the other. Figure 4 which shows
the distribution of similarities in our dataset, confirms this
situation.

Drug-Drug Similarities Target-Target Similarities
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Figure 4: Distribution variation of different similari-
ty values between drugs and between targets. Simi-
larities with values of zero or one are omitted in this
plot.

Another method of blocking is based on choosing a different
threshold for each similarity measure. While better than the
previous approach, similar problem could arise in a target
or drug level similarities, i.e. similarities for each target or
for each drug having highly variable values. Therefore, choo-
sing a fixed threshold will include many similarities for some
drugs or targets, and very few for others. Figure 5 which
shows Annotation-based similarity for drugs, demonstrates
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Figure 5: Distribution of Annotation-based similari-
ty values for 315 drugs, where dots indicate mean si-
milarity value between each drug and all others, and
lines demonstrate standard deviation of the values.
Similarities with values of zero or one are omitted
in this plot. e.g., mean of all drug similarities with
drug #200 is about 0.2 with stdev. of 0.15.

an instance of this situation.

Instead, here we propose an approach based on k-nearest-
neighbors to ensure that for every drug and every target at
least a few values from each similarity are not blocked. In
this approach, we preserve the k-highest values in each si-
milarity for each drug and each target and set the others to
zero. However, depending on the method used for calculating
the similarities, there are many cases that similarity values
between multiple drugs or targets are the same. Hence, k-th
nearest neighbor of a drugs or target is often not only a single
instance but many drugs or targets with the same similari-
ty values. To control this situation we consider the drugs or
targets with similarities greater than the k-th nearest neigh-
bor. In other words, we only include the similarities from
k-1 drugs or targets. Formally, the blocked set of similarity
predicates are as follows:

L. blocked __
Similary =

Similary(z;, x;) if Similary(x;, xj) > Similary(x;, T1);
0 otherwise.
9)

where )\ is any drug-drug or target-target similarity and xz
is the k-th nearest neighbor of z;.

3.4 Collective Classification

Most traditional machine learning approaches assume the
data are independent and identically distributed (i.i.d.). In
drug-target interaction prediction setting, the presence or
absence of an interaction is often studied independently. Ho-
wever, interaction are highly interdependent as they are pre-
dicated based on each other (e.g., in triads).

It can be beneficial to consider interactions jointly. This ap-
proach often referred to as collective classification [24] and
it results in global information propagation through the net-
work. Since PSL performs MPE inference on the interpretati-
on I over the whole network (eq. (3)), interaction predictions
propagate and influence the prediction of other interactions.

Therefore, even if a triad or tetrad structure does not initi-
ally include an observed interaction, such rules can reason
about new interactions using other predicated interactions.

4. EXPERIMENTAL ANALYSIS

We performed an empirical evaluation studying:

e The effectiveness of triad ((5)&(6)) and tetrad rules
(7).

e The effectiveness of our proposed blocking strategy.

e The results of weights learned for the different simila-
rity functions.

4.1 Dataset

Our dataset is based on a network of drugs and genetic tar-
gets, where interactions between them are obtained from the
DrugBank database [27]. The dataset includes 315 drugs, 250
targets and 1,306 interactions. We use 5 drug-drug and 3
target-target similarities, obtained from Perlman et al. [22].
A brief description of the methods used for similarity cal-
culation are provided in this section. Drug-drug similarities
include the following:

1. Chemical-based: Using the chemical development kit
(CDK) [26], the hashed fingerprint of each drug based
on the canonical SMILES? obtained from Drugbank,
was computed. Considering each fingerprint as a set
of elements, The Jaccard similarity of the fingerprints
where calculated. The Jaccard similarity score between
two sets X and Y is as follows:

Jaccard(X,Y) = %

2. Ligand-based: Drugs canonical SMILES obtained
from Drugbank were compared against a collection of
ligand sets using the similarity ensemble approach
(SEA) search tool [13]. A list of relevant protein-
receptor families were obtained for each drug, and Jac-
card similarity was computed between the correspon-
ding sets of receptor families for each drug pairs.

3. Expression-based: The Spearman rank correlation
coefficient of gene expression responses to drugs retrie-
ved from the Connectivity Map project [16, 17] was
used as a similarity measure between drugs. Spearman
rank correlation coefficient between two sets X and Y
is calculated via:

Spearman(X,y) = — =@ = D —7)

V@ -0y, (i - 9)?

where x; and y; are ranked elements of X and Y.

4. Side-effect-based: Drugs side-effects were obtained
from SIDER [15] and the similarities between drugs
were calculated using the Jaccard score between their
common side-effects.

3Simpliﬁcd Molecular Input Line Entry Specification



5. Annotation-based: Drug’s ATC codes where obtain-
ed from DrugBank and matched against the World He-
alth Organization ATC classification system [25], whe-
re drugs are categorized based on different characteri-
stics. The semantic similarity algorithm of Resnik [23]
was used to calculate the similarities.

Target-target similarities include the following:

1. Sequence-based: The Smith-Waterman sequence
alignment scores, normalized via the method sugges-
ted in [3], which divides the pairwise score by the geo-
metric mean of the alignment scores of each sequence
against itself.

2. Protein-protein interaction network-based: Using
an all-pairs shortest path algorithm, the distance bet-
ween pairs of genes were calculated using their corre-
sponding proteins in the human protein-protein inter-
actions network.

3. Gene Ontology-based: Using the method of Res-
nik [23] the semantic similarity measure between Gene
Ontology annotations, downloaded from UniProt [12]
were calculated.

Perlman et al. [22] provide more detailed description of these
similarities.

4.2 Evaluation Criteria

There are multiple evaluation methods for link prediction
problems [19]. We use the Area Under the ROC Curve (AUC)
[9] for our evaluations as this is the most common reported
measure in the related publications, and it allows us to com-
pare against the published results of other methods [3, 22, 28]
on the same dataset.

ROC curves are created by plotting the true positive rate
versus the false positive rate at various thresholds. The drug-
target interaction network does not have information about
the negative samples, i.e. lack of interaction. The missing
links which we call unobserved interactions in the network,
could represent interactions that are not yet studied. As des-
cribed in the next section, the common practice is to assume
the unobserved interactions as negative samples. In our in-
ference we do not make such assumption. However, to be
able to calculate the AUC in our evaluations, we treat the
unobserved interaction as negative samples. This evaluation
assumption does not effect the inference step.

We use 10-fold cross validation, where at each fold 10% of the
positive interactions are left out. We perform inference, pre-
dicting interactions, and compare against the held out known
interaction. We report the average values over all folds along
with their standard deviations.

4.3 Results

We first conduct our experiments to study the effect of do-
main knowledge (or assumptions) on the predictions. We
compare the rules based on triads ((5)&(6)), and the ru-
les based on tetrads (7). We conduct the experiments using
three different settings; once including only the triad-based
rules, once including only the tetrad-based rules, and once
including both set of rules in the model. We set the blocking

parameter (k) to 5, in order to control the groundings in
tetrad-based and combined settings. We learn the weights of
the rules in each setting using separate hold-outs of interac-
tions.

As Table 1 shows the rules inspired by triads are more pre-
dictive of the interactions comparing to the rules that are
based on tetrads. This experiment not only provides insight
into the prediction paradigm assumptions of triads and te-
trads, but also demonstrates how we can easily test such
domain assumptions.

Table 1: Comparision of triad-based and tetrad-
based rules

| Rules || AUC with k=5 |
Triad-based only 0.930 + 0.016
Tetrad-based only 0.796 £+ 0.025
Triad-based & tetrad-based 0.913 £0.017

In our next set of experiments, we study the effect of blocking
and weight learning on performance using the triad rules
((5)&(6)). We conduct the blocking study by varying the
number of neighbors (k). We study the effect of weight lear-
ning by running the experiments under two conditions. We
once set all weights to 5 (arbitrary), and once learn the
weights from a set of observed interactions. Table 2 shows
performance of the model with different ks. The insignificant
performance change suggests that even with limited number
of similarities (i.e., k=5) PSL can provide valid predictions.
Table 2 shows average computation time of a 10-fold cross
validation experiment on a computer with a (2x4) 2.66 GHz
Intel processor and 48GB of RAM. It should be noted that
as we executed our experiments on machines with slightly
different specifications and under different loads, these num-
bers are approximate representations. The results show that
blocking causes significant improvement in processing time
with no performance loss.

Table 2: Completion time and performance variati-
ons under the effect of blocking and weight learning
with triad-based rules

Condition — Tlme| to Coznialleste and |AUC e
Exec. time 12mins 3h 9h
Vr:wr, =5 0.926 £+ 0.016 0.929 + 0.020 0.923 + 0.021
Exec. time 1h 10h 28h

wy, Learned 0.930 +0.016 | 0.931 £ 0.018 0.924 £ 0.21

Table 2 also shows the effect of weight learning on perfor-
mance. Although weight learning improves the results, it
does not have a significant impact on AUC. Table 3 shows
the average weights assigned by PSL to triad rule of each
similarity. In this combined setting where rules are weigh-
ted against each other Sequence-based target similarities are
slightly more important.

Perlman et al. [22] report experimental evaluation on the
same dataset as the one we use for our experiments. They
report that the method of Perlman et al. [22] achieves AUC
of 0.935, method of Yamanishi et al. [28] achieves AUC of
0.884 and, Bleakley and Yamanishi [3] get AUC of 0.814.
In our experiments, although we use the same dataset as
Perlman et al. [22], due to different sampling methods and




Table 3: Weights learned for each triad-based rule
under variation of number of neighbors (k)

R Weights
Similarity F=5 [ k=15 [ #=30
Annotation-based 1.21 | 1.28 1.46
Chemical-based 1.29 | 1.40 1.42
Drugs | Ligand-based 1.92 | 2.06 2.02
Expression-based 1.65 | 1.78 1.75
Side-effect-based 1.74 | 1.75 1.67
PPI-network-based 1.556 | 1.24 1.20
Targets | GO-based 1.81 | 1.90 1.84
Sequence-based 2.72 | 245 2.18
Negative Prior 3.43 | 9.05 | 14.21

performance variations under the effect of sampling, our re-
sults are not exactly comparable. However, our results in
Table 2 show that in addition to high interpretability, PSL
with simple triad-based rules matches the prediction perfor-
mance of the state-of-the-art methods.

Figure 6 shows the average precision of the top 100 interac-
tion predictions for all 10 folds. As we did not sample the
unobserved interactions for inference, our setting is highly
class imbalanced. We have 1,306 real interactions (positi-
ve samples) and 78,750 total possible interactions. In such
imbalanced setting, our predictions have high precision. In
addition, Figure 6 shows that although weight learning did
not have a high impact on the AUC, it significantly improves
the precision of the predictions.

0.6
0.5
0.4
0.3

0.2

0.1

0

1 11 21 31 41 51 61 71 81 91

= with weight learning ~ ===without weight learning

Figure 6: Average precision of the top 100 interacti-
on predictions for all 10 folds with k=5.

S. DISCUSSION AND CONCLUSION

To use traditional machine learning algorithms we have to
convert the data to a matrix of features and instances. Ho-
wever, the drug-target interaction network is not easily con-
vertible to such format. The methods that transform the
data to such suitable format [11, 22], rely mostly on heuri-
stic intuitions, suffer from loss of information, and are hard
to interpret. Since PSL is fundamentally designed based on
multi-relational network environments there is no such re-
quirement to change the data format.

In addition, modeling drug-target interaction prediction as
classification, requires presence of both positive and negati-
ve samples to achieve optimal performance. However, it is
not really known that the missing link between a drug and a

target is due to a real lack of interaction, or lack of scientific
investigation. A common technical assumption of conside-
ring all missing links as negative samples [3, 22, 28], is not
valid. In contrast, we write PSL rules without the need for
negative instances. In our rules, the missing links are treated
as unobserved interactions. In the inference step a truth va-
lues will be assigned to all unobserved interactions by PSL.
In conclusion, we proposed a drug-target interaction pre-
diction framework based on Probabilistic Similarity Logic.
We showed how domain assumptions can be implemented
and tested using rules in a bipartite network of drug-target
interactions with a set of similarities between drugs and bet-
ween targets. Furthermore, we studied rules based on triads
and more advanced tetrad structures for link prediction. We
described limitation of different blocking methods and pro-
posed a highly efficient blocking methods in the network.
Using weight learning, we provided insight into usefulness of
each similarity with respect to interaction predication and
improved the prediction precision. We also showed that in
addition to higher interpretability, our model matches the
performance of the state-of-the-art approach via experimen-
tal evaluations.

We can extend our method with study of clusters in the
network and rules on that basis. We also plan to study per-
formance of our model using other performance measures
and evaluate new interaction predictions of the PSL with
help of domain experts. Our proposed method can easily be
generalized to all networks with similar structures.
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