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Abstract. Scientific data generation in the world is continuous. However,
scientific studies once published do not take advantage of new data. In
order to leverage this incoming flow of data, we present Neuro-DISK,
an end-to-end framework to continuously process neuroscience data and
update the assessment of a given hypothesis as new data become available.
Our scope is within the ENIGMA consortium, a large international
collaboration for neuro-imaging and genetics whose goal is to understand
brain structure and function. Neuro-DISK includes an ontology and
framework to organize datasets, cohorts, researchers, tools, working groups
and organizations participating in multi-site studies, such as those of
ENIGMA, and an automated discovery framework to continuously test
hypotheses through the execution of scientific workflows. We illustrate
the usefulness of our approach with an implemented example.
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1 Introduction

Scientific discoveries are based on hypothesis testing and rigorous data analysis.
Such analyses are often time consuming and include steps that are difficult
to interpret from scientific publications, and therefore, hard to systemically
reproduce. Often, the designed hypothesis is tested only once against the acquired
data sample and later archived. Interestingly, in empirical sciences such as the
biological sciences, it is not uncommon for a hypothesis to yield contradictory
results when evaluated on different data samples. In our data-driven world, data
that may be potentially relevant for testing a hypothesis is being continuously
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generated but is often not studied to its full potential for hypothesis re-evaluation
in combination with other related data. The lack of an integrated system to
constantly monitor the hypothesis of interest and update the underlying analysis
when new data become available, is one of the challenges for automatic hypothesis
re-evaluation. Having a framework that can keep such hypotheses alive requires
systematically capturing the knowledge about the data and analytics involved in
the hypothesis testing, which is often heterogeneous and compartmentalized.

In this paper, we propose a solution to address the above challenges in the
neurosciences based on our previous work for Automated DIscovery of Scientific
Knowledge (DISK) [1]. We have extended DISK to explore brain-aging related
hypothesis and data by generalizing the ability for the system to connect to
external knowledge bases, including projects available within the Enhancing
Neuro Imaging Genetics through Meta-Analysis (ENIGMA)?* consortium [2], a
neuroscience collaboration where projects span many contributors from different
institutions around the world. In our proposed solution we address challenges
of data, analytics, and hypothesis complexity. The data shared through imaging
initiatives such as the ENIGMA consortium includes multiple levels of hetero-
geneity, and are regularly expanding in volume. The analytics related to such
data requires the use of dozens of interconnected tools, each of which may require
substantial domain knowledge. The underlying hypotheses may depend on a
range of possible multi-modal technical, neurological, clinical, demographic, and
genetic data which could be collected across multiple datasets.

2 Related Work

Two closely related research areas in machine learning are online algorithms [3]
(algorithms that revise their models when new data become available), and data-
stream specific models [4] (that deal with challenges of reprocessing portions of
prior data to scale to large data streams). A major advantage of our work over
these methods is that our analytical steps do more than learning from data. For
example, some of our steps may include integrating the relevant cohort properties.
Another important difference is that our system can react when new kinds of
data become available and invoke new analytic tools or algorithms different
from the original ones. In addition, distinctive to active agents such as Robot
Scientist [5], our method simply listens and reacts to the data that others collect.
Moreover, in contrast to other hypothesis evaluation solutions, such as EXPO [6]
and HELO [7], our approach represents supporting evidence for hypotheses as
reproducible computational components, records their evolution in reaction to
new data, and updates their confidence intervals.

3 Background

In this section we describe our domain of focus and the sub-components that we
leverage to develop our solution.
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3.1 The ENIGMA Consortium

The ENIGMA consortium [8] is an international network connecting researchers
in imaging genomics, neurology and psychiatry, in order to understand brain
structure and function, based on multi-modal imaging and genetic data collected
from various patient populations. One of the major ambitions of the consortium
is to combine various datasets made available via its international partners into
larger samples necessary to detect minute gene effects on complex traits that are
otherwise not confidently identifiable with smaller isolated samples. Major goals
of ENIGMA network include: creating a network of scholars with similar interests
in brain imaging, genetics, neuro-psychiatry, and ensuring reproducibility of
major findings through member collaborations, while facilitating information,
algorithms and data sharing.

Members of the consortium constantly share new datasets and/or results, and
run experiments and analysis across all available related data. The challenges
involved in this global and dynamic collaborative platform, highlights a need to
systematically organize its heterogeneous resources to facilitate identification and
retrieval of entities of interest. The ENIGMA network would also benefit from a
solution to capture the hypotheses under investigation by its members and their
related analysis workflows to make them reproducible, especially if such solution
could automatically find the related data and dynamically update the analysis
results when new data become available. In this paper we layout the overall
architecture and components of such solution for the ENIGMA consortium and
report on our developed prototype.

3.2 The Organic Data Science Platform

We use the Organic Data Science framework (ODS) [9] and managing information
about ENIGMA (ENIGMA-ODS). ODS is built on Semantic MediaWiki, which
uses W3C standards such as RDF and SPARQL to represent its contents in
a structured manner. Each wiki page represents a different resource (e.g., a
researcher, a project, an organization, etc.) and shows the most relevant properties
of that resource’s class. For example, the wiki page of an organization will have
name and address properties. Wiki pages can be filled out by users, who may
contribute to the population and curation of the ENIGMA-ODS knowledge base.

ENIGMA-ODS is structured based on the ENIGMA Ontology® [10], which
extends standard vocabularies such as Schema.org® and includes a representation
for datasets, cohorts, persons, organizations, protocols, instruments, software
and working groups together with their more common relationships. However,
users may extend the ontology with their own properties and categories whenever
necessary. Each dataset has a set of metadata assertions, defined in triples of
the form < subject, property, value >, where the subject identifies the resource
being described (e.g., a dataset), the property refers to the aspect of the subject
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we want to describe (e.g., creation date) and the value identifies the value of
the property for a resource (e.g., creation date is 2-2-2020). The data catalog
supports W3C SPARQL queries to specify the desired metadata properties of
datasets.

3.3 The DISK Framework

DISK [1, 11] is a framework designed to test and revise hypotheses via automatic
analysis of dynamic scientific data. DISK evaluates and revises an input hypothesis
via continuously examining related data as they become available. It also triggers
new kinds of analyses and workflows with the availability of new kinds of data,
tracking the provenance of revised hypothesis and its related details. DISK
operates based on the description of available ODS metadata, expressed using
domain ontologies with the W3C OWL and RDF Semantic Web standards.

A user defines the hypothesis of interest through the DISK GUI. To evaluate
a hypothesis, DISK relies on a library of Lines of Inquiry (LOI). A Line of
Inquiry includes a hypothesis pattern, a relevant data query pattern, a set of
workflows to process that data and one or more meta-workflows to combine
workflow results and generate revised confidence values or hypotheses. If a user
hypothesis matches the hypothesis of a Line of Inquiry, the system will use the
LOI query pattern to search for appropriate data to pass to the LOI workflows
for execution.

Workflows are executed via WINGS [12], a semantic workflow system for
designing scientific computational experiments that specifies the steps and con-
figuration of data processing by software components. The execution results and
their corresponding provenance trace are then stored in a Linked Data repository.
Finally, the associated meta-workflows explore this repository and revise the
original hypothesis, if necessary. DISK was demonstrated for canceromics, and
this paper introduces new extensions for neuroscience [1, 11].

4 The Neuro-DISK Framework

We have extended DISK for neuroscience data exploration, analysis execution,
and hypothesis testing. The framework integrates the ENIGMA-ODS platform
for data search, which has access to all available information from datasets,
cohorts, protocols and working groups. Our extension enables newly added and
curated datasets to ENIGMA-ODS to be used in assessing existing or new Lines
of Inquiry. We validate our framework by testing the hypothesis: “Is the effect size
of the number of APOEJ alleles on Hippocampus volume associated with the age
of the cohort?”. This hypothesis is important in Alzheimer’s disease (AD) studies,
which is the most common neuro-degenerative disorder and severely impacts
patients’ daily behaviors, thinking, and memory over a wide range of ages [13].
The hippocampus, the brain’s memory hub, has been shown to be particularly
vulnerable to Alzheimer’s disease pathology, and is already atrophied by the time
clinical symptoms of AD first appear [14]. The e4 haplotype (set of two alleles)
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@  Lines of Inquiry

Short Description

The EffectSize of a Genotype on BrainlmagingDerivedTrait is associated with DemographicAttribute

Long Description

The EffectSize of a Genotype on BrainlmagingDerivedTrait is associated with DemographicAttribute

Hypothesis Pattern (Ctrl-: e for su tions)

1 ?PEffectSize hyp:source ?Genotype .
2 ?PEffectSize hyp:target ?BrainImagingDerivedTrait .
3 PEffectSize hyp:associatedWith ?DemographicAttribute .

Data Query Pattern (Ctrl-S

1 Pcohort a ?cohortClass .

2 PcohortClass rdfs:label "Cohort (E}" .

?cohort ?PdatasetProp ?datasetl .

?datasetl ?featureProp ?DemographicAttribute .
?datasetl ?schemaProp ?schemal .

5 PschemaProp rdfs:label "Schema:Distribution (E)" .
?schemal PurlProp ?urll .

& ?urlProp rdfs:label "Schema:ContentUrl (E)" .

| Pcohort ?datasetProp ?dataset2 .

?datasetProp rdfs:label "HasDataset (E)" .

11 Pdataset2 ?featureProp ?BrainImagingDerivedTrait .
12 ?PfeatureProp rdfs:label "HasFeature" .

?dataset2 ?schemaProp ?schema2 .

?schema2 ?PurlProp ?url2 .

Workflows to Run

. Mmeta

=1 )
Variable Bindings: {age . I

Fig. 1. An example of a line of inquiry for assessing the association between the effect
size of a genotype on a brain-imaging derived trait for a particular cohort (or study
population), with a meta-level demographic attribute such as age.

of the APOE (apolipoprotein E) gene, is the most significant single genetic risk
factor for late-onset Alzheimer’s disease [15]. At each of two positions in the
genome, a possible e4 allele contributes to this genetic risk. However, there have
been inconsistent findings in determining whether the e4-risk factor contributes
to differences in brain structure, particularly that of hippocampal volume. Several
imaging-genetic studies have found a significant correlation between this major
genetic risk factor for Alzheimer’s disease, and higher rates of hippocampal
volume loss [16], while others have found no correlation with volume [17]. Here,
by using a meta-regression design, we investigate whether findings attempting
to relate APOE4 genotype and hippocampal volume, specifically the effect sizes
associated with studies, may be due to the age of the cohorts being studied, and
a function of the study sample-sizes.
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Our hypothesis triggers the Line of Inquiry shown in Figure 1, which studies
the correlation between an effect on a brain characteristic and a demographic
attribute. This hypothesis meets the requirements listed in the Hypothesis Pattern
section of Figure 1, i.e., APOE/ being the genotype of interest, Hippocampal
volume a brain imaging derived trait and age a meta-level demographic attribute,
describing the average age of the cohort. Once the hypothesis pattern is met,
Neuro-DISK will aim to find the appropriate datasets to run the workflows
associated with the LOI. DISK uses the information under the Data Query
Pattern section to issue a SPARQL query to the ENIGMA-ODS platform. The
query pattern aims to retrieve the dataset URLs (schema:contentURL) belonging
to the same cohort that contain the target brain characteristic and demographic
value. DISK then uses the resulting data URLs as input to the associated workflow
in the LOI (i.e., the “meta” workflow in Figure 1). The workflow consists of
a sample-sized weighted meta-regression to determine whether the magnitude
of the target genetic (APOE4) effect on a phenotype, is driven by the target
demographic (age).

The underlying data for this analysis was based on imaging phenotypes and
genotypes obtained from publicly available international cohorts, including ADNI-
1, ADNI-2; DLBS, and the UK Biobank (application ID 15599). To configure
the workflow, we incorporated the data from these independent cohorts with
brain imaging and APOE4 genotype information. For each cohort, we ran a
fixed-effects linear regression to associate the subjects’ number of APOE4 risk-
alleles (0, 1, or 2) with the mean bilateral hippocampal volumes derived from
Freesurfer v5.3 [18]. Age, sex, and intracranial volume (to control for overall
head size) were included as covariates in the regression. The resulting beta-value
or un-standardized regression-coeflicient and its corresponding standard error,
were used to generate a standardized z-score for each cohort; the z-score was
then regressed against the mean age of each cohort for the meta-regression, as
was done in [19] for genome-wide significant findings. We note that given the
sample size of UK Biobank (approximately 10,000 sample points at the time of
writing, we split the data according to 5-year age bins). DLBS also had a wide
age range from 30 to over 80, so that dataset was split into one younger than 60,
and another older than 60 (a roughly even split) for this demonstration.

Figure 2 shows the results of our meta-regression analysis, automatically
generated via the Neuro-DISK framework. In this proof of principle analysis
with a handful of public datasets, age showed a negative association with the
APOEA4 effect size on hippocampal volume; should this association hold with
more data points, it would suggest that the association between the APOE4
genotype and hippocampal volume may be driven by cohorts of individuals with
older mean ages, therefore explaining why some studies may not find a significant
effect of the most well known Alzheimer’s disease risk genotype, with the most
well-accepted brain-MRI derived biomarkers for Alzheimer’s disease.
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Fig. 2. Meta-regression for age and the effect size of Alzheimer’s disease related risk
genotype on hippocampal volume (p=0.011). Age is negatively associated with the
APOEA4 effect size on MRI-derived hippocampal volume. The size of the points are
proportional to cohort size, and dashed lines indicate confidence intervals.

5 Conclusions and Future Work

In this paper we described Neuro-DISK, a framework to automatically test hy-
potheses in the neuroscience domain, specifically in the context of the ENIGMA
and international consortium. Our framework integrates the ENIGMA-ODS
platform, allowing further testing on previous hypotheses whenever a user con-
tributes new datasets in the system. Note that currently a single hypothesis was
tested, and the corresponding variables that were incorporated in the system
were selected a priori. However, in cases when multiple variables are selected,
such as multiple genetic markers, or multiple brain regions, in the same Line of
Inquiry, standard multiple comparisons correction techniques including the false
discovery rate adjustment are conducted.
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Neuro-DISK is still in development, but our current work shows the potential
for continuous hypothesis testing in this domain. In this paper, we only used data
from four publicly available cohorts. However, as multisite studies are conducted
on a larger scale in ENIGMA and other international consortia, upwards of 50
cohorts may be included for evaluating such hypotheses [19]. We are working
towards addressing three main challenges: 1) improving synchronization between
ENIGMA-ODS and Neuro-DISK to make the system more adaptive to triggering
all compatible Lines of Inquiry with the addition of new datasets; 2) designing
the query patterns to make them more accessible for users without SPARQL
knowledge; and 3) automatically evaluating additional hypotheses based on
generated workflow results.
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