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ABSTRACT 

Prior to neurosurgical resection of abnormal brain tissues in 
mTLE patients, focal points of the seizure should be identified via 
a set of examinations. Once decisive evidence is not present in 
noninvasive clinical profile of mTLE patients, extraoperative 
Electrocorticography (ECoG) is required which is the practice of 
using electrodes placed directly on the exposed surface of the 
brain. Through classification techniques on a dataset of mTLE 
patients, we have studied the possibility of reduction of such 
requirement and shown significant results. Furthermore, we 
compared the performance of six well known classifiers using the 
area under receiver operating characteristic (ROC) curve (AUC) 
and a proposed measure of decision confidence. We have shown 
that in critical domains such as medicine, use of AUC does not 
provide sufficient information about the confidence of the 
classification and further measures are needed. 

Categories and Subject Descriptors 

H.2.8 [Database Management]: Database Applications-data 
mining; I.2.6 [Artificial Intelligence]: Learning; I.5.2 [Pattern 

Recognition]: Design Methodology-feature evaluation and 
selection 

General Terms 

Algorithms, Performance, Experimentation 

Keywords 

classification; decision confidence; performance evaluation; 
missing values; temporal lobe epilepsy; lateralization; AUC; 
confident prediction rate 

1. INTRODUCTION 
Epilepsy is a disorder of the brain characterized by an enduring 
predisposition to generate epileptic seizures and by the 
neurobiological, cognitive, psychological and social consequences 
of this condition [1]. Mesial temporal lobe epilepsy (mTLE) is the 
most commonly investigated and operated form of localization-
related epilepsy. Clinical study of this disorder has become 
increasingly more elaborate, particularly through electrographic 
and imaging applications. Neurosurgical resection of the abnormal 

brain tissues in patients suffering from mTLE is a way of 
eliminating and reducing the occurrence of epileptic seizure 
onsets. Prior to such operation, focal points of the seizures should 
be identified via a set of examinations.     

Availability of several diagnostic methods from multiple sources 
results in creation of high-dimensional spaces where data analysis 
and decision making become intricate tasks without the aid of 
appropriate tools. To lateralize the seizure focus in mTLE 
patients, several noninvasive clinical attributes are investigated. 
Such attributes include semiology, neuropsychological profiles, 
pathology, electrographic features, and magnetic resonance (MR) 
and single photon emission computed tomography (SPECT) 
imaging. 

Once decisive evidence is not present in noninvasive clinical 
profiles of mTLE patients, extraoperative Electrocorticography 
(ECoG) is required. ECoG is the practice of using electrodes 
placed directly on the exposed surface of the brain to record 
electrical activity from the cerebral cortex. Besides the financial 
burden of this procedure, ECoG imposes further distress on 
patients and their families. In our paper, patients whose standard 
noninvasive evaluations are sufficient for their lateralization are 
referred to as phase I patients and those who require ECoG are 
referred to as phase II patients.   

Since data mining techniques have been successfully applied in 
various biomedical domains to study complex diseases [2], such 
approach is applied in this study to provide decision assistance in 
lateralizing focal epileptogenicity. The goal of this paper is to 
reduce the need for ECoG via data mining techniques and finding 
the best classifier for this purpose. However, since decision 
making is highly critical in medical domains, classifiers that result 
in higher decision confidence are preferred. To be able to evaluate 
such confidence in different classifiers, we propose a new 
measure and compare it with well known area under receiver 
operating characteristic (ROC) curve (AUC) measure. 

Six classifiers are applied to the lateralization task with 
preoperative data of patients to assess possibility of predicting the 
correct side of abnormality. These data exclude the invasive 
ECoG measurements. In the following sections, different features 
of the system, preprocessing stages, and classification tasks are 
explained. Furthermore, more details about the confidence 
measure are provided. 

2. DATASET 
To integrate several clinical attributes of TLE patients from 
various sources and subsystems, human brain image database 
system (HBIDS) [3], which is a clinical and imaging database of 
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TLE patients, is developed at the radiology research department of 
Henry Ford Health System in Detroit Michigan. Details about the 
attributes and patient cohort used in this study are provided below. 

2.1 Attributes 
The HBIDS database contains several clinical attributes including 
risk factors underlying the condition, semiology, both pre- and 
postoperative neuropsychological profiles, location of surgery, 
pathology and outcome according to the Engel classification.  
Descriptive electrographic features include interictal waveforms, 
their location and predominance as well as ictal onset location.  
Both magnetic resonance (MR) and single photon emission 
computed tomography (SPECT) (ictal and interictal) imaging is 
included with the provision for quantitative, semi-automated 
assessment of compartmental volume, fluid-attenuated inversion 
recovery (FLAIR) mean signal and standard deviation, and texture 
analysis.  Wada study results are also available.  

2.2 Patient Cohort 
Not all surgical resections result in complete relief from seizures 
due to various and possibly unknown reasons. Therefore, outcome 
of the epilepsy surgery is reported in the database according to 
Engel classification (class-I: free of disabling seizures, class-II: 
rare disabling seizures, class-III: worthwhile improvement, class-
IV: no worthwhile improvement). 

Cases with postoperative outcome of free of disabling seizures 
(Engel class-I) confirm a definitive laterality of focal 
epileptogenicity by human experts. To obtain ground truth for the 
classification evaluation, only such patients are selected from the 
database. 

In this study, 79 patients with Engel class-I outcome are selected 
(31 males, 48 females) with 197 medical features.  The patients 
have an average age of 38y (S.D. 12.2). Temporal lobe 
epileptogenicity is found to be on the left side in 43 patients and 
the right side in 36 patients.  In 46 patients, standard noninvasive 
evaluations lateralize the TLE sufficiently well to proceed with 
resection of the site of epileptogenicity directly, whereas, 33 
patients require ECoG (41.7%).   

The dataset contains missing values in different features due to 
various reasons such as inability to perform all medical tests for 
each patient. Missing values are identified for EEG features in 
21% of cases, for Wada studies in 31%, for SPECT imaging 
features in 35%, and for FLAIR and volumetric imaging in less 
than 10% of cases.  The missing values of the remaining features 
are found in about 20% of cases on average. 

3. FEATURE SELECTION 
It is known that the prediction accuracy of practical machine 
learning algorithms degrades when faced with many features that 
are not necessary for predicting the desired output. In our case, 
with 79 patients and 197 attributes, the need for feature selection 
is apparent. Feature selection is utilized in biomedicine and 
bioinformatics in diagnostic value evaluation of a medical test and 
discovery of biomarkers [4].  

However, we have to consider the characteristics of our domain 
such as missing values and class imbalanced distribution. 
Although the number of patients are chosen to be proportionate in 
each class (side of abnormality), missing values are not randomly 
distributed among classes and elimination of them imposes class 
imbalance problems.  

To deal with these issues, we have applied a heterogeneous 
ensemble of single variable classifiers to rank the medical features 
based on their individual predictive performance. Only the 
patients with properly recorded values are considered in each 
feature evaluation. Feature performances are evaluated based on 
the area under the receiver operating characteristic (ROC) curve 
(AUC) to address any class imbalance problem due to the missing 
value elimination. As reported in our previous papers [5, 6] with 
more details, final score of each feature is calculated using the 
average AUC over multiple classifiers: 

P�f�� = ∑ AUC�c�, f′����	∈	� |C|⁄                   (1) 

where all missing values of a feature f�  are removed to generate 
f �� and c� is the classifier that belongs to the classifier pool C of 
the classifiers.	|C| indicates the number of classifiers. 

Using this method, imaging, EEG and Wada attributes are ranked 
as the most discriminating features with regards to lateralization. 
Table 1 summarizes the performance of the top ranking attributes. 
We have reported more detailed clinical attribute rankings based 
on different patient cohorts in [7]. 

Table 1. Discriminative power of top ranking diagnostic 

features. Locations of EEG activities are numbered according 

to their dominance, as 1 being the highest amount of activity 

and 3 being the lowest. 

Attribute 
Avg. 

AUC 

FLAIR standard deviation ratio (R/L) 0.914 

Compartmentalized ictal SPECT subtraction (R-L) 0.912 

Ictal EEG location (R/(R+L)) 0.905 

Interictal sharp wave EEG location (1) 0.878 

Hippocampus volume ratio (R/L) 0.807 

FLAIR mean signal intensity ratio(R/L) 0.803 

5 Texture  ratios (R/L) 0.790 

Interictal sharp wave EEG location (2) 0.785 

1 Texture ratio (R/L) 0.779 

Interictal slow wave EEG location (1) 0.778 

Wada subtraction number of correct answers (R-L) 0.698 

 
To build a classifier, a feature subset from the top ranking features 
must be selected. We use a difference based cut off method 
described in [8]. Starting from an empty subset, features are added 
to the subset and their contributions to the improvement of the 
classification performance are measured. When improvements are 
not substantial, more features are not added to the subset.  

Since our dataset contains many missing values, using more 
features introduce more missing values. To avoid including 
unnecessary features, the ones that have high correlations with 
any other feature already in the subset are eliminated from the 
final selection. Nine of the attributes listed in Table 1 excluding 
texture features that are highly correlated with other imaging 
features are selected in the final subset.  

4. CLASSIFICATION  
Since our goal is to predict the side of abnormality in patients 
suffering from mTLE and reduce ECoG requirements, a classifier 
could be built only on the patients who underwent such operation. 
However, there are two reasons to include all the patients in the 
classifier. First, this decision support system should also be able to 
predict side of abnormality in phase I patients, so it could provide 
reassurance for the experts decisions. Secondly, there are limited 
number of phase II patients in the dataset and elimination of phase 



I patients reduces the classifier’s learning power. Furthermore, 
having 9 features in the final subset increases the risk of over 
fitting with limited number of samples. Therefore, we have 
performed the classification task using all patients with good 
surgical outcomes. Figure 1 demonstrates the relative placement 
of phase I and phase II patients in a scatter plot of FLAIR mean 
signal and standard deviation ratios. It is seen that phase I patients 
populate the space and helps with the classification task. 

 
Figure 1. Patients in scatter plot of FLAIR standard deviation 

and FLAIR mean signal intensity ratios. Side of abnormality 

in patients is shown with “R” and “L” letters, respectively.  

Phase II patients are outlined. 

5. PERFORMANCE AND CONFIDENCE 

EVALUATION 
To evaluate the performance of the classifiers, AUC which is 
constructed by plotting the true positive rate versus the false 
positive rate by changing the decision threshold or boundary is 
calculated [9]. Using leave-one-out cross validation, the 
probability of “right” class membership is calculated for each 
patient and the ROC plots are generated using these probabilities.  

However, since our domain has zero tolerance for invalid 
decision, although the classification is binary, two thresholds 
should be used, and the final classification response should be 
“left”, “right”, or “undecided”. This is to ensure that predictions 
are only provided for samples that could be lateralized with 
certainty by the classifiers and avoid predicting the laterality for 
the ones with lower probabilities. To achieve such classifier, any 
chosen thresholds have to be set on points where no mistakes are 
made when the side of abnormality is predicted. The limits of the 
thresholds are invalid predictions with the highest predicted 
probabilities. As an example, when using the probability of 
patients having abnormality in their right side, threshold limits are 
α and β (α > �) where all patients with predicted probabilities 
higher than α and lower than β are correctly classified and the 
ones right below α or right above β are predicted incorrectly. The 
system response for patients between α and β is “undecided”. 

Using this method, there will be no incorrect classifications, but 
only undecided cases. The number of predicted cases will be a 
measure of preference for the classifiers. This measure penalizes 
the classifiers that predict an incorrect side of abnormality with 
high probability. However, since the actual predictions thresholds 
could be chosen more conservatively than the very limits, 
performances of the final classifiers have to be evaluated after the 
thresholds are set. Two sets of sample holdouts are required for 
evaluation and final test sets for this reason. However, the α and β 

limit are the upper bounds for the classifier performance in this 
fashion and could indicate the classifier’s potential in such 
classification. We refer to this measure as “confident prediction 
rate” (CPR): 

CPR =
#	��	����� !"	��#$�%"#&	�'"%��&��#�

(�&)!	#	��	�)*�!"�
∗ 100             (2) 

where samples with predicted probabilities more extreme than α 
and β are possible confident predictions. 

Compared to AUC, the later performance measure will provide 
another detailed insight into the classification. In our experimental 
results, we show that a high AUC is not correlated with CPR, and 
despite high AUC, the number of possible confident predictions 
can be extremely low.  

6. EXPERIMENTAL RESULTS 
The codes to support different stages of the experiments are 
implemented in Java, WEKA, and R. Since most patients have at 
least one feature with a missing value, elimination of patients with 
missing values is not possible. Therefore, neutral values are used 
to impute the missing values, 1 for attributes representing a ratio 
and 0 for attributes representing a subtraction or deviation. For 
categorical attributes, missing values are replaces with “N/A”.  

The classifiers included in this study are those of naïve Bayes 
(NB), support vector machine (SVM), 3-nearest neighbors (3NN), 
multilayer perceptron(MLP), logistic regression (LR), and random 
forests (RF). In addition, several variations of the selected features 
subset are used to provide more insight into the dataset and 
feature sets predictive values. Experiments are conducted on all 
selected features, top four features, imaging features only, EEG 
features only, and Wada feature only. Leave-one-out cross 
validation is used to evaluate the performance of each classifier. 
The results are summarized in Table 2. 

Table 2. Performance evaluation of different classifiers on 

different feature subsets. 

(a) AUC of the classifiers using different feature subsets 

Features  NB SVM MLP 3NN LR RF 

All 9 0.993 0.959 0.978 0.964 0.986 0.968 

Top 4 0.973 0.970 0.974 0.952 0.966 0.957 

Imaging 0.982 0.981 0.957 0.929 0.975 0.916 

EEG 0.951 0.951 0.943 0.964 0.925 0.958 

Wada 0.609 0.660 0.599 0.596 0.660 0.689 

(b) Confident prediction rate (CPR) of the classifiers using 

different feature subsets 

Features NB SVM MLP 3NN LR RF 

All 9 84.8% 36.7% 72.2% 43.0% 44.3% 64.6% 

Top4 65.8% 72.2% 54.4% 38.0% 41.8% 36.7% 

Imaging 81.0% 75.9% 59.5% 0.0% 72.2% 0.0% 

EEG 53.2% 65.8% 45.6% 73.4% 30.4% 62.0% 

Wada 10.1% 13.9% 12.7% 22.8% 13.9% 12.7% 

 
From Table 2a, it is seen that the best results are generated using 
all 9 features of imaging, EEG, and Wada. In this case, naïve 
Bayes generates the best performance results in terms of AUC. 
Using only the top 4 features, namely FLAIR standard deviation 
ratio (R/L), compartmentalized ictal SPECT subtraction (R-L), 
ictal EEG locations (R/(R+L)), and interictal sharp wave EEG 
location (1) comparably good performances are resulted 
suggesting the possibility of classification using only these 
features. Similarly, imaging only and EEG only features also 
produce good classification results. However, despite the general 



confidence in Wada tests, our experiments suggest that such test 
does not provide sufficient information for reliable lateralization.  

More interestingly is the dissimilarity between the AUC and the 
CPR measure that we discussed in the previous section. Table 2b 
shows that although some classifiers generate results with high 
AUCs but since they incorrectly predict some classes with high 
probability, they could not be trusted in a sensitive domain such as 
medical decision support. An example of such case is in using LR 
with all 9 features which generated the AUC of 0.986 and CPR of 
44.3% while MLP results in lower AUC of 0.978 with higher 
CPR of 72.2%. In a medical domain such as this case, MLP 
should be preferred over LR despite the AUCs suggesting 
otherwise. Figure 2 demonstrates the ROC curves of six classifiers 
in this study using all features. It could be seen that although LR, 
SVM, and 3NN generate high AUCs but their ROC curves 
diverge from the vertical axis at the beginning of the curve, 
decreasing the CPR measure. 

 
Figure 2. Receiver operating characteristic (ROC) curves of 

the six classifiers used in the study. 

7. DISCUSSION AND CONCLUSION 
Using six classifiers, we showed the possibility of using data 
mining techniques to build a decision support system that could 
potentially lateralize 84.8% of the patients with high confidence 

without the need for extraoperative Electrocorticography (ECoG). 
Lacking such system, only 58.2% of patients were lateralized by 
domain experts using noninvasive methods. Using this method, it 
is potentially possible to lateralized 78.8% of the phase II patients, 
while only 8.7% of the phase I patients will be undecided. 

We also demonstrated that AUC does not provide sufficient 
information about the confidence of the classification and other 
measures such as our proposed “confident prediction rate” (CPR) 
are needed in domains such a medicine. Using the experiments, 
we demonstrated that classifiers that generate high AUCs might 
not be sufficiently confident for domains that require reliable 
predictions. 
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