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Abstract

State-of-the-art methods for drug-target interaction prediction make use of interaction networks,
drug similarities, and target similarities. In this paper we study the importance of multi-relational
and collective prediction in these domains. We implement different models with probabilistic soft
logic (PSL) to empirically show the effect of each assumption on prediction performance and demon-
strate that a model using collective inference and combination of similarities significantly outper-
forms other models. In other words, we show the superiority of the models that combine multiple
heterogeneous evidence and take advantage of the relational structure of the data.

1 Introduction

Drugs are microscopic organic molecules that bind to bio-molecular targets to activate or inhibit their functions. They
often affect multiple targets, causing unexpected therapeutic or adverse side effects. Due to these adverse side effects,
many novel therapeutic compounds fail during clinical trials. Predicting side effects during the drug developmental
phase reduces the high cost of clinical trials and is crucial for the commercial success of new drugs. Moreover, due to
the high cost and low success rate of novel drug development, pharmaceutical companies are extremely interested in
drug repositioning or repurposing, which involves finding new therapeutic effects of pre-approved drugs.

Drug-target interaction studies are important to predict both unexpected therapeutic or adverse drug side-effects. Ex-
perimental identification of all drug-target associations is labor intensive and costly. Thus, computational predictions
of potential interactions are highly valuable to focus biological experiments. Several frameworks have been proposed
for such discoveries including recent network-based approaches [1, 2].

Drug-target interaction networks are bipartite graphs between drugs and targets, where edges denote interactions.
These graphs can be augmented with different drug-drug similarities such as chemical-structure-based similarity, and
target-target similarities such as sequence-based similarity [3]. Drug-target interaction prediction corresponds to link
prediction in this augmented network. More specifically, given the partially observed network (interactions and simi-
larities) we want to predict the probability of the unobserved links (interactions).

In this paper, we study two aspects of this task using our previous prediction framework built via probabilistic soft
logic (PSL) [4]. First, we study the multi-relational nature of the network with different drug-drug and target-target
similarities. We compare performance of models using only a single similarity with models using multiple similarities.
We empirically show that PSL [5] efficiently combines similarities to improve prediction performance.

Next, we study the independent and identically distributed (i.i.d.) assumption on data points (i.e., drug-target inter-
actions). We argue that the fundamental i.i.d. assumption of most machine learning techniques does not hold in this
domain, and empirically show that models that account for this property gain performance advantage over the ones
that do not.

2 Our Model

We use the recently proposed PSL framework for drug-target interaction prediction [4] in our experiments. PSL uses
rules written in first-order logic-like syntax as a templating language for hinge-loss Markov random fields over random
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variables [6]. A typical PSL rule looks like the following:
ω : P (A,B) ∧Q(B,C)→ R(A,C) (1)

where P ,Q andR are predicates,A,B, andC are variables, and ω is a weight associated with each rule. We represent
drugs and targets as variables and specify predicates to represent different similarities and interactions between them
(e.g., Interacts(D, T)). Each predicate will be grounded with data to make a ground atom, or fact. A soft truth value
will be assigned to each observed ground atom (e.g., Similar(Acetaminophen, metformin)=0.64).

An assignment of soft-truth values to a set of ground atoms is called an interpretation (I) of that set. In this setting,
a ground instance of a rule r (rbody → rhead) is satisfied (i.e., I(r) = 1) when I(rbody) ≤ I(rhead). Using this
definition, PSL defines a distance from satisfaction for each rule (δr). To assign truth values to unobserved atoms,
PSL performs most probable explanation (MPE) inference give the partial interpretation. PSL defines a probability
distribution over interpretations I by combining the weighted degree of satisfaction over all rules, as the following:

f(I) = 1

Z
exp

[
−

∑
r∈R

ωrδr(I)

]
(2)

whereR is a set of ground rules, ωr is the weight of rule r, and Z is a normalization constant.

We use triad-based rules for our experimental studies [4]. The rules are motivated by the observation that similar
targets tend to interact with the same drugs, and similar drugs tend to interact with the same targets [7]. Figure 1
depicts the triad-based prediction of interaction for drugs and targets.
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Figure 1: Similar drugs tend to interact with the same target (a), and similar targets tend to interact with the same drug
(b). In a collective model information can propagate through the network (c).

We proposed the following rules to capture the triad relations of Figure 1(a) and 1(b) respectively [4]:
SimilarDrugα(D1, D2) ∧ Interacts(D2, T )→ Interacts(D1, T ) (3)
SimilarTargetβ(T1, T2) ∧ Interacts(D,T2)→ Interacts(D,T1) (4)

where we use T for a target, D for a drug, SimilarTargetβ for a specific target-target similarity, and SimilarDrugα
for a specific drug-drug similarity.

We design the following two studies based on these rule structures:

Combining Similarities We first study the effect of incorporating multi-relational heterogeneous information, and
combining multiple drug-drug and target-target similarities. Different similarities can replace SimilarTargetβ and
SimilarDrugα in the rules above as described in [4]. For each similarity metric, we add an instance of the rule (3)
and (4) to the PSL model correspondingly. We study the situation where PSL models predict new interactions using
only one drug-drug or target-target similarity versus when they are all combined.

Collective Inference We then study the effect of making the simplifying i.i.d. assumption in this setting. The
presence or absence of a drug-target interaction is often studied independently [3]. However, interactions are highly
interdependent and can be predicted based on each other (e.g., in triads). Inferred probability of one interaction should
affect the probability of other interactions. Rules (3) and (4) adopt a collective inference approach, using inferred links
to imply the existence of other links, that results in global information propagation through the network. Figure 1(c)
shows a situation where a predicted interaction is used in predicting other interactions.

In this study we want to show the effect of such assumption by writing analogous rules that do not allow collective
inference. We perform predictions using a non-collective model with the following rules:

SimilarDrugα(D1, D2) ∧ObservedInteracts(D2, T )→ Interacts(D1, T ) (5)
SimilarTargetβ(T1, T2) ∧ObservedInteracts(D,T2)→ Interacts(D,T1) (6)
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We will ground ObservedInteracts with the observed interactions from the dataset, and use predicate Interacts for
predictions. In contrast to rules (3) and (4), the predictions cannot be used in the body of the rule to activate new
instances of the rules. Hence, predictions are only made based on observed evidence. In other words, rules (3) and (4)
make collective inference where rules (5) and (6) do not.

3 Experiments

Our dataset is based on a network of drugs and genetic targets, where interactions between them are obtained from the
DrugBank database [4]. The dataset includes 315 drugs, 250 targets, and 1,306 interactions. We use five drug-drug
and three target-target similarities. Drug-drug similarities include Chemical-based, Ligand-based, Expression-based,
Side-effect-based, and Annotation-based and target-target similarities include Sequence-based, PPI-network-based,
and Gene Ontology-based. Each of these similarities will have a corresponding predicate and a corresponding rule in
the experiments, i.e., there are five instances of the rules (3) and (5) and three instances of rules (4) and (6).

As PSL grounds every possible rule to predict each link, the number of grounded instances of rules can be extremely
large. To control such situations, we limit some of the rules from being grounded by ignoring some of the less
significant similarities. We use our previous K-nearest-neighbors-based (with K=15) approach [4]. This is commonly
referred to as blocking in the entity-resolution domain [8] and is a method to avoid the quadratic cost of the full
problem.

We evaluate the model performances via ten-fold cross validation over the observed interactions. We measure area
under the ROC curve (AUC), area under the precision-recall curve (AUPR) of the positive class, and precision of the
top 130 predictions (i.e., the number held out in each fold). Due to high class imbalance (130 positive examples to
77576 negative examples), AUC changes are subtle and AUPR performance is relatively low, thus precision of the top
130 predictions highlights the importance of each model modification more clearly. In reality, only the top portion of
the predicted interactions are interesting for domain experts for further evaluations.

Table 1: Prediction based on one similarity and all similarities combined.
SIMILARITY AUC AUPR prec@130

Drugs

Annotation-based 0.788± 0.022 0.122± 0.016 0.198± 0.019
Chemical-based 0.755± 0.023 0.064± 0.015 0.155± 0.025
Ligand-based 0.774± 0.025 0.069± 0.014 0.151± 0.027
Expression-based 0.606± 0.024 0.005± 0.001 0.020± 0.009
Side-effect-based 0.726± 0.015 0.068± 0.015 0.151± 0.032

Targets
PPI-network-based 0.851± 0.021 0.167± 0.046 0.225± 0.045
GO-based 0.678± 0.029 0.025± 0.006 0.080± 0.022
Sequence-based 0.826± 0.027 0.129± 0.034 0.213± 0.045

All Similarities Combined 0.931± 0.018 0.190± 0.032 0.249± 0.041

Table 1 shows the results from the first study, which compares using single similarities with using all similarities.
Annotation-based drug-drug similarity, and PPI-network-based target-target similarities generate the best perfor-
mance among models using a single similarity. There is a significant difference between the single similarity setting
(AUC=0.851± 0.021) and the all-similarities-combined setting (AUC=0.931± 0.018). This study clearly shows that
considering the multi-relational nature of the problem increases accuracy.

Figure 2 shows the average (over ten folds) precision of the top 130 predictions for the second study, which compares
collective against non-collective modeling. It is clear that collective modeling significantly improves the performance
in this setting, as it generates a much higher precision at various thresholds in the top 130 links.

Table 2 shows the variation of performance under collective and non-collective conditions using different measures.
The significant superiority of collective inference is clear. Due to high class-imbalance, AUC does not reflect the
change in performance as well as the other measures.

Table 2: Effect of collective inference
CONDITION AUC AUPR 130-PRECISION
Non-collective inference 0.926± 0.016 0.058± 0.009 0.090± 0.024
Collective inference 0.931± 0.018 0.190± 0.032 0.249± 0.041
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Figure 2: Collective vs. non-collective average precision of the top 130 prediction.

4 Conclusion

We empirically demonstrate that considering the multi-relational nature of drug-target interaction prediction improves
performance. We used probabilistic soft logic (PSL) to effectively combine different similarities from heterogeneous
sources to achieve better performance. We used rules (3) and (4) to study the combination of different similarities.
Because these rules imply collective reasoning, predictions from one similarity can be used as evidence in rules with
other similarities, which boosts the performance of the combined-similarities setting. We also showed that collective
inference significantly improves prediction performance. This strongly suggests that the common i.i.d. assumption of
most machine learning techniques is too strong for this domain, and frameworks such as PSL that enable collective
inference are necessary for more accurate predictions.
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