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Abstract—Drug-target interaction studies are important because they can predict drugs’ unexpected therapeutic or adverse
side effects. In silico predictions of potential interactions are valuable and can focus effort on in vitro experiments. We propose
a prediction framework that represents the problem using a bipartite graph of drug-target interactions augmented with drug-drug
and target-target similarity measures and makes predictions using probabilistic soft logic (PSL). Using probabilistic rules in PSL,
we predict interactions with models based on triad and tetrad structures. We apply (blocking) techniques that make link prediction
in PSL more efficient for drug-target interaction prediction. We then perform extensive experimental studies to highlight different
aspects of the model and the domain, first comparing the models with different structures and then measuring the effect of
the proposed blocking on the prediction performance and efficiency. We demonstrate the importance of rule weight learning in
the proposed PSL model and then show that PSL can effectively make use of a variety of similarity measures. We perform an
experiment to validate the importance of collective inference and using multiple similarity measures for accurate predictions in
contrast to non-collective and single similarity assumptions. Finally, we illustrate that our PSL model achieves state-of-the-art
performance with simple, interpretable rules and evaluate our novel predictions using online datasets.

Index Terms—Link prediction, Collective inference, Heterogeneous similarities, Drug target prediction, Drug target interaction
prediction, Drug repurposing, Drug discovery, Polypharmacology, Drug adverse effect prediction, Statistical relational learning,
Hinge-loss Markov random fields, Machine learning, Bipartite networks, Systems biology
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1 INTRODUCTION
The cost of successful novel chemistry-based drug
development often reaches billions of dollars, and the
time to introduce the drug to market often comes
close to a decade. Most new compounds fail during
clinical trials or show adverse side effects. Because of
the high failure rate of drugs during this process, the
trial phase is often referred to as the “valley of death”
[1].

Most drugs1 affect multiple targets, and Polyphar-
macology, the study of such interactions, is an area
of growing interest [2]. These multi-target interac-
tions potentially result in both unintentional thera-
peutic and adverse side effects. Predicting side effects
during the drug developmental phase can reduce
the high cost of clinical trials and is crucial for the
commercial success of new drugs. Moreover, due to
the high cost and low success rate of novel drug
development, pharmaceutical companies are partic-
ularly interested in drug repositioning or repurposing,
which involves finding new therapeutic effects of pre-
approved drugs.

Sildenafil—originally developed for pulmonary arte-
rial hypertension treatment—is a famous drug repur-
posing example. In clinical trials, it was discovered
by chance to have a side effect of treating erectile
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1. Organic molecules that bind to bio-molecular targets and
inhibit or activate their functions.

dysfunction in men, and it was eventually re-branded
as Viagra [3].

Drug-target interaction identification is an essential
step of drug repurposing and drug adverse effect
prediction. In vitro identification of drug-target as-
sociations is a labor-intensive and costly procedure.
Hence, in silico prediction methods are promising
approaches for focusing in vitro investigations [4].

There are several methods to model the drug-target
interaction prediction task [5], many of which use a
network representation [6]. We can construct a bipar-
tite interaction network where nodes represent drugs
and targets, and edges denote interactions. Drug-
drug and target-target similarities can augment this
network on each side. Data from multiple publicly
accessible datasets can be integrated toward building
these networks [7]. The similarities between drugs
and between targets have different semantics. For
example, targets can have similarity measures based
on their sequences and their ontology annotations [8].
Figure 1 shows a schematic overview of a drug-target
interaction network.

A link prediction method can predict new potential
drug-target interactions in this setting [9, 10]. How-
ever, traditional link prediction methods often ignore
the multi-relational characteristics of this drug-target
interaction network (i.e., nodes and edges with differ-
ent semantics) or make oversimplifying assumptions
that neglect key, interdependent phenomena during
prediction.

The structure of the network and the multi-
relational aspects make it challenging to convert such
knowledge into the (flat) data formats that are typ-
ically used with standard prediction algorithms. At-
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Fig. 1: A schematic overview of a drug-target inter-
action network. Edges between drugs and between
targets represent different similarities.

tempts to make such conversions often rely on poten-
tially ad-hoc feature engineering approaches [8, 11].
Such methods may sometimes yield good prediction
performance, but they suffer from low interpretability
and loss of information. Our approach is based on the
premise that links depend on the similarities between
their endpoints and on other interactions. Hence, a
collective approach is more appropriate than stan-
dard machine learning models that make simplifying
independence assumptions. As described in Section
5, in a collective setting, the presence or absence of
interactions are studied interdependently.

In this paper we present a drug target predic-
tion framework based on probabilistic soft logic (PSL)
[12, 13]. We reason collectively over the unknown
interactions using a structured representation that
captures the multi-relational nature of the network2.
We design a PSL model for drug-target interaction
prediction that reasons over structured rules. We
consider two types of structured rules, triad rules
and tetrad rules, and consider a variety of similarity
metrics. We propose a blocking method to manage the
large computational cost of inference in this task and
perform experimental studies on different aspects of
link prediction in the drug-target interaction domain
with this model. We compare the relative improve-
ment provided by each type of structural rule and
find that triad-based rules enable more accurate pre-
dictions. We also experiment with the effect of using
different similarity metrics and show that combining
all similarity metrics in a single probabilistic model
produces the most effective model. We additionally
test the importance of collective inference in such
models by comparing against an analogous model
that makes independent predictions. Our PSL based
solution outperforms the state-of-the-art drug-target
interaction prediction method proposed by Perlman

2. Our previous workshop papers [14, 15] contain a preliminary
version of part of this research.

et al. [8]. We further validate that our PSL models
can outperform Perlman et al. [8] on a set of new
interactions that were not considered in the original
evaluation of Perlman et al. [8].

2 RELATED WORK

In the similarity ensemble approach (SEA), Keiser et al.
[4] use ligands to predict interaction. They use ligands
for target representation and chemical similarities be-
tween drugs and ligand sets as potential interaction
indicators. In CMap, by Lamb et al. [16, 17], mRNA
expressions are used to represent diseases, genes, and
drugs. They compare up- and down-regulations of the
gene-expression profiles from cultured human cells
treated with bioactive molecules and provide cross-
platform comparisons. They predict new potential
interactions based on opposite-expression profiles of
drugs and diseases. Chang et al. [18, 19] proposed a
method for predicting drug targets for a given phe-
notype predicting phenotypes given specific genetic
perturbations.

A number of methods reason about network struc-
tures to predict interactions. Cockell et al. [3] describe
how to integrate drugs, targets, genes, proteins, and
pathways into a network for different tasks. They
present a hypothesis that similar targets interact with
the same drugs, and similar drugs tend to interact
with the same targets. Lee et al. [7] describe drug
repurposing, multi-agent drug development, and es-
timation of drug effects on target perturbations via
network-based solutions.

Yildirim et al. [6] explain trends in the drug-
discovery industry over time using a network-based
analysis and show the effect of sequencing the
genome on drug development. They also discuss
different structural aspects of this network including
preferential attachment and cluster formation.

Network-based approaches integrate drug-drug
and target-target similarities extracted via different
methods (e.g. SEA and CMap) with the drug-target
interactions network. The following methods use a
single similarity measure for drugs and targets to
predict interactions: Cheng et al. [20] predict poten-
tial interactions using drug-drug and target-target
similarities and a bipartite interaction graph. Us-
ing SIMCOMP [21], they compute the 2D chemical
drug similarities and sequence similarities for tar-
gets via the Smith-Waterman score. They use the
following three link-prediction methods: drug-based
similarity inference (DBSI)—only considering similar-
ities between drugs; target-based similarity inference
(TBSI)—only considering target similarities; network-
based inference (NBI)—combining both similarities.
Alaimo et al. [22] extend this approach by proposing
a DT-hybrid method that integrates prior domain-
dependent knowledge.

Yamanishi et al. [11] propose the following three
methods for interaction prediction: a nearest neighbor
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approach; weighted k-nearest neighbors; and space
integration. For the space integration method, they
describe a genomic space, using the Smith-Waterman
score for targets, and the SIMCOMP score for drugs.
They propose a method to integrate drugs and targets
in a unified latent pharmacological space, and they pre-
dict interactions in that space based on the proximity
of drugs and targets. They separate out four categories
of targets, namely enzymes, ion channels, GPCR, and
nuclear receptors for their experiments. They also
report that similar drugs tend to interact with similar
targets and vise versa.

Bleakley and Yamanishi [23] extend this method
and construct local models for graph inference. They
classify each interaction twice and combine the results
to provide a prediction. First, they build a classifier
based on drugs and then based on targets. They use
the similarities as the support vector machine (SVM)
kernels. Extending this method, Mei et al. [24] pro-
pose to infer training data from neighbors’ interaction
profiles to make predictions for new drug or target
candidate that do not have any interactions in the
network. Wang and Zeng [25] propose a method
based on restricted Boltzmann machines for drug-
target interaction prediction.

More advanced methods predict interactions based
on multiple similarities. Chen et al. [26] reason about
the possibility of a drug-target interaction in relation
with other linked objects. They use distance, shortest
paths, and other topological properties in the network
to assess the strength of a relation. They assign scores
to paths between drugs and targets and combine path
scores for each drug-target pair.

Perlman et al. [8] propose a feature-engineering
method based on combinations of drug-drug and
target-target similarities and use classification to pre-
dict interactions. They build their method based on
five drug-drug and three target-target similarities.
They evaluate their model using cross validation over
three online datasets and validate their predication on
a fourth dataset. They show significant performance
improvement over Bleakley and Yamanishi [23] and
Yamanishi et al. [11] that only use one type of drug-
drug and target-target similarities for prediction. To
the best of our knowledge Perlman et al. [8] method
is the state-of-the-art mutli-similarity based approach
for drug-target interaction prediction.

Gottlieb et al. [27] extend their method in [8]
to drug-disease domain and propose a personalized
medicine approach, representing diseases via their
genetic signatures. This method can predict the most
effective compound for a genetic signature of an
unknown disease.

3 OUR MODEL
Our proposed drug-target prediction framework uses
probabilistic soft logic (PSL) [12, 13]. In this section, we
review PSL and present the logical rules that we use
for drug-target interaction prediction.

3.1 Probabilistic Soft Logic
PSL uses syntax based on first-order logic as a tem-
plating language for probabilistic models over contin-
uous variables. For example, a PSL rule can be of the
following form:

w : P (A,B) ∧Q(B,C)→ R(A,C), (1)

where P , Q, and R are predicates, and A, B, and C are
variables. For instance, P (A,B) can be Interacts(D,T )
where D represents a drug and T is a target.
Predicates become instantiated with data, generating
groundings (e.g., Interacts(acetaminophen, cox2)). Each
grounding forms a ground atom, or logical fact, that
has a soft-truth value in the range [0, 1]. In our PSL
model for drug-target interaction, we represent drugs
and targets as variables and specify predicates to rep-
resent different similarities and interactions between
them. Then the rules encode domain knowledge about
dependencies between these predicates.

Since PSL uses continuous variables to represent the
soft truth of atoms, its semantics are based on relax-
ations from Boolean logic. PSL uses the Lukasiewicz
t-norm and co-norm to provide relaxations of the
logical connectives AND (∧), OR (∨), and NOT (¬)
as follows:

p ∧ q = max(0, p+ q − 1),

p ∨ q = min(1, p+ q),

¬ p = 1− p.

A full assignment of soft-truth values to a set of
ground atoms is called an interpretation (I) of that set.
Using the above relaxations and the logical identity
p → q ≡ ¬ p ∨ q, a ground instance of a rule r
(rbody −→ rhead) is satisfied (i.e., I(r) = 1) when
I(rbody) ≤ I(rhead).

PSL defines a probability distribution by quantify-
ing a distance to satisfaction for each grounded instance
of a rule. A rule’s distance to satisfaction under inter-
pretation I is calculated as follows:

dr(I) = max{0, I(rbody)− I(rhead)}. (2)

The distance to satisfaction for all rules are used
as features in a log-linear distribution, where the
weights are nonnegative. The density function for the
distribution is

f(I) =
1

Z
exp

[
−
∑
r∈R

wrdr(I)p

]
, (3)

where R is the set of ground rules, wr is the weight
of rule r, p is a modeling parameter in {1, 2}, and Z
is the normalization constant

Z =

∫
I

exp

[
−
∑
r∈R

wrdr(I)p

]
dI. (4)

Because each factor in this density function uses
a hinge function (2) reminiscent of hinge-losses used
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in classification, PSL’s probability distributions are in-
stances of hinge-loss Markov random fields (HL-MRFs).
For HL-MRFs, inference of a most probable explanation
(MPE), which finds the most probable interpretation
given evidence (i.e., a given partial interpretation) is
computed by maximizing the density function f(I)
in Equation (3), subject to both the evidence and
the equality and inequality constraints. For example,
given a drug-target interaction network and interac-
tions between some drugs and some targets, the goal
of MPE inference is to output the most likely interac-
tions between all other drugs and targets. Finding the
most probable interpretation given a set of weighted
rules reduces to solving a convex optimization prob-
lem and can be solved very efficiently [28, 29].

The PSL rule weights indicate how much an assign-
ment is penalized if a rule is not satisfied. They are a
measure of importance for each rule. We can set the
weights based on prior domain knowledge or, if we
have training data, we can learn the weights using
a number of different training objective and learning
algorithms [12, 13, 29]. In particular, the primary
methods for weight learning are voted-perceptron
approximate maximum likelihood, maximum pseudo-
likelihood, and large-margin estimation.

In this work, we use approximate maximum like-
lihood, which we review here. We seek to maximize
the log-likelihood of the full data, including both the
observed data and the training labels. We can do so
using gradient ascent, where the gradient of the log-
likelihood with respect to a weight wi is:

∂

∂wi
log f(I) = −

∑
r∈Ri

dr(I)p + E

[∑
r∈Ri

dr(I)p

]
,

where Ri is the set of ground rules parameterized
with weight wi. This gradient is intractable to com-
pute exactly because the expectation term enumer-
ates all possible interpretations, so we approximate
the expectation by the values at the MPE solution.
This approximation—whose resulting algorithm can
be interpreted as a form of structured perceptron—
is effective in practice and has been used on various
other structured models [30, 31].

3.2 PSL Model for Drug-Target Interaction
We design a PSL program using rules that capture
domain knowledge about the drug-target interaction
problem. Our rules model the idea that similarity
among drugs may imply similar interactions with
targets, and similarity among targets may imply
similar interactions with drugs. We incorporate many
types of similarities into a single joint probabilistic
model, simultaneously reasoning about the various
possible interactions.

Triad-based rules: For drug-target interaction
prediction, many established methods are based on
triangles or triads between drugs and targets. These

triads occur between two similar targets and a drug
that interacts with both of them, or two similar drugs
and a target that both drugs interacts with. The hy-
pothesis is that similar targets tend to interact with
the same drug and that similar drugs tend to interact
with the same target [3, 11, 20]. Figure 2 depicts the
triad-based prediction of interactions for drugs and
targets.
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Fig. 2: Propagation via triads. Similar targets tend to
interact with the same drug (a), and similar drugs
tend to interact with the same target (b).

The following rules capture the triads shown in
Figure 2(a) and 2(b) respectively:

SimilarTargetβ(T1, T2) ∧ Interacts(D,T2)

→ Interacts(D,T1),
(5)

SimilarDrugα(D1, D2) ∧ Interacts(D2, T )

→ Interacts(D1, T ),
(6)

where T denotes a target, D indicates a drug,
predicate SimilarTargetβ represents a specific target-
target similarity metric. For each similarity metric,
we add an instance of rule (5) to the PSL model. Our
model is capable of integrating any set of similarities
with these rules. As described in Section 6, we
include three instances of this rule, where β is
sequence-based, PPI-network-based, or gene ontology-
based. Predicate SimilarDrugα represents a specific
drug-drug similarity measure. We consider five
instances of rule (6), where α is chemical-based,
ligand-based, expression-based, side-effect-based, or
annotation-based.

Tetrad-based rules: In addition to triads, we
also consider more complex templates for reasoning
about both drug and target similarities to predict
interactions. Specifically, when a drug interacts with
a target, we may expect another similar drug to
interact with another similar target. Figure 3 illustrates
this hypothesis. We encode this hypothesis using the
following tetrad rules:

SimilarDrugα(D1, D2) ∧ SimilarTargetβ(T1, T2)

∧Interacts(D2, T2)→ Interacts(D1, T1),
(7)

where α and β are drug-drug or target-target similar-
ity measures as discussed earlier. We include multiple
instances of triad and tetrad rules corresponding to
the three drug-drug and five target-target similarity
measures.
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To further enhance our model, we also experiment
with an extension of the tetrad-based rules which
we call exclusive tetrad rules. The idea behind this
extension is to exclusively ground rules for the tetrad
structures that do not include any triads inside them:

¬Interacts(D1, T2) ∧ ¬Interacts(D2, T1)

∧SimilarDrugα(D1, D2) ∧ SimilarTargetβ(T1, T2)

∧Interacts(D2, T2)→ Interacts(D1, T1).

(8)

  
1

2 2

1

?

Fig. 3: Propagation via tetrads. Consider a pair of
similar drugs and a pair of similar targets. If one of
the drugs interacts with one of the targets, then the
other drug may interact with the other target.

Negative prior: We also include a negative prior
indicating that the Interacts predicate is most likely
false, accounting for the natural sparsity in the drug-
interaction network. The negative prior rule is as
follows:

¬Interacts(D,T ). (9)

The similarity predicates SimilarDrugα and
SimilarTargetβ represent observed values, and the
interaction predicate Interacts represents values that
are partially observed. These rules all combine to
form a complex, structured model that captures a
large number of dependencies between unknown
Interacts values that we aim to predict. In the next
section, we discuss techniques to manage the high
complexity of this rich model.

4 BLOCKING
Because PSL inference considers all possible substitu-
tions for the rules, the number of ground rules can be
extremely large. Let |D| denote the number of drugs,
|α| the number of different similarities between them,
|T | the number of targets, and |β| the number of differ-
ent similarities between targets. Then each potential
link can be involved in O(|D| × |α|) instances of rule
(6), O(|T | × |β|) instances of rule (5). For tetrad-based
rules, the situation is even worse because the number
of possible substitutions is even greater. In addition,
since there are O(|D| × |T |) potential interactions, the
total number of ground rules is O(|D||T |(|D||α| +
|T ||β|)). Running inference on such a massive number
of ground rules is too computationally expensive for
many practical settings.

To limit the number of ground rules, we prevent
some of the rules from being grounded by reducing
the number of triads and tetrads that are considered

for each potential link. To reduce this number, we
essentially ignore some of the less similar drugs and
targets pairs. This strategy is reminiscent of blocking
[32, 33, 34], which is a term that refers to the process
of limiting the number of links considered. Typically,
blocking decisions are done using a fast computation
to fully avoid the quadratic costs inherent in link
prediction settings.

There are several ways to approach blocking in
our problem; the most basic strategy simply uses a
fixed threshold for all similarities and sets the values
below that threshold to zero. However, although the
similarities are normalized to [0, 1], the distribution of
the values tends to be highly varied such that a fixed-
threshold approach can ignore most of the values
in some similarity measures or include most of the
values from another. Figure 4 plots the distribution of
similarities in our dataset, illustrating the diversity in
the shapes of distributions these similarity measures
generate.
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Fig. 4: Distribution variation of different similarity
values between drugs and between targets. Similar-
ities with values of zero or one are omitted in this
plot.

Another method of blocking chooses a different
threshold for each similarity measure. While poten-
tially better than the previous approach, similar issues
occur due to variability in individual target and drug
similarity distributions. Similarities for each target or
for each drug can have highly variable values, and
choosing a fixed threshold will include too many sim-
ilarities for some particular drugs or targets and very
few for others. Figure 5 shows the annotation-based
similarity for drugs and demonstrates an instance of
this situation.

Instead, our proposed approach uses k-nearest-
neighbors to ensure that every drug and every target
considers at least a few values from each similarity.
In this approach, we preserve the k-highest values
in each similarity for each drug and each target and
set the others to zero. However, depending on the
method used for calculating the similarities, there are
many cases that similarity values between multiple
drugs or targets are the same. Hence, the k-th nearest
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Fig. 5: Distribution of annotation-based similarity val-
ues for 315 drugs, where dots indicate mean simi-
larity value between each drug and all others, and
lines demonstrate standard deviation of the values.
Similarities with values of zero or one are omitted in
this plot. E.g., the mean of all annotation-based drug
similarities with drug #200 is about 0.2 with standard
deviation of 0.15.

neighbor of a drug or target can have the same
similarity as a large set of other drugs or targets.
To address the possibility of ties, we consider the
drugs or targets with similarities greater than the k-th
nearest neighbor. In other words, we only include the
similarities from k-1 drugs or targets. Formally, the
blocked set of similarity predicates are as follows:

Similarblocked
λ ={

Similarλ(xi, xj) if Similarλ(xi, xj) > Similarλ(xi, xk);
0 otherwise.

(10)

where λ is any drug-drug or target-target similarity
and xk is the k-th nearest neighbor of xi.

5 COLLECTIVE INFERENCE
Traditional machine learning approaches often predict
outputs independently, separating examples into dis-
tinct, unrelated instances. For example, in the drug-
target interaction prediction setting, the presence or
absence of each interaction is determined based on the
evidence and independent of the other interactions.
However, actual interactions may be interdependent.

Classification problems that consider interdepen-
dencies are known as collective classification problems
[35]. Algorithms that perform collective classification
exploit global information propagation through net-
works defined over the data. Since PSL performs MPE
inference on the interpretation I over the whole net-
work, interaction predictions propagate and influence
the prediction of other interactions. Thus, PSL models
perform collective classification and can reason about
new interactions using other predicated interactions.

Specifically, rules (5) and (6) adopt a collective in-
ference approach, using inferred links to imply the
existence of other links, that results in global informa-
tion propagation through the network. Figure 6 shows
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Fig. 6: Collective inference. Predicted interactions can
be used for other inferences using target (a) or drug
similarities (b), or both.

a situation where a predicted interaction is used in
predicting other interactions.

We designed a model to experiment with the po-
tential detrimental effect of making independent pre-
dictions. We use rules analogous to (5) and (6) that do
not allow collective inference:

SimilarTargetβ(T1, T2) ∧ObservedInteracts(D,T2)

→ Interacts(D,T1),
(11)

SimilarDrugα(D1, D2) ∧ObservedInteracts(D2, T )

→ Interacts(D1, T ).
(12)

We ground ObservedInteracts with the observed in-
teractions from the dataset and use predicate Interacts
for predictions. In contrast to rules (5) and (6), here
only observed interactions imply the presence of new
interactions, whereas in our full joint model, inferred
interactions can imply other interactions. Hence, pre-
dictions using these new rules are only made based on
observed evidence. We report the comparative results
of the collective and non-collective models in the
experimental analysis section.

6 EXPERIMENTAL ANALYSIS

We perform an extensive evaluation of our PSL based
method on a dataset that was obtained from Perlman
et al. [8]. We first report on the behavior of the PSL
based method3 for different configurations as follows:
• Rule structure: We first compare the effectiveness

of triad-based (5 & 6) and tetrad-based rules (7).
This study serves as an example to test different
domain assumptions for this task.

• Blocking: We show the effectiveness of our
proposed blocking strategy by showing the
speedup and performance stability of our block-
ing method.

• Weight learning: We measure the effect of weight
learning on performance by comparing models
with and without weight learning.

3. Our code and data we used for our experiments along with
our implementation of the approach from Perlman et al. [8] can be
obtained from: https://github.com/shobeir/fakhraei tcbb2014

https://github.com/shobeir/fakhraei_tcbb2014
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• Collective inference: We show the strength of
models with collective inference, by comparing
our collective model versus the non-collective
version of our model.

• Combining similarities: Finally, we measure the
effectiveness of PSL for combining information
from different similarities. In this study, we com-
pare models with all similarities against models
using a single similarity.

We then compare the (best) performance of our
method against the method of Perlman et al. [8].

6.1 Dataset
We obtained our dataset from Perlman et al. [8]. The
interactions between drugs and targets are obtained
from DrugBank [36], KEGG Drug [37], DCDB (Drug
Combination database) [38], and Matador [39]. We
also use the same five drug-drug and three target-
target similarities used by Perlman et al. [8].

We filtered the dataset to remove the drugs and
targets that do not have any computed similarities.
The final dataset includes 315 drugs, 250 targets, and
1,306 interactions.

Using NodeXL [40], we calculate graph statistics
and visualize the graph. The graph contains 16 con-
nected components, and the largest component in-
cludes 518 vertices and 1280 edges. The average
geodesic distance4 in the graph is 5.31 with a max-
imum of 15. The vertices’ degrees range from 1 to
37, with average of 4.6. Figure 7 shows an overall
visualization of the drug-target interactions in the
dataset, where drugs are drawn as blue squares and
targets as red circles.

This section includes a brief description of the meth-
ods used for similarity calculation and how they were
computed by Perlman et al. [8]. Drug-drug similarities
include the following:

Chemical-based: Using the chemical development
kit (CDK) [41], Perlman et al. [8] computed the
hashed fingerprint of each drug based on the canon-
ical SMILES5 obtained from Drugbank. Considering
each fingerprint as a set of elements, they computed
the Jaccard similarity of the fingerprints. The Jaccard
similarity score between two sets X and Y is

Jaccard(X,Y ) =
|X ∩ Y |
|X ∪ Y |

Ligand-based: Drugs’ canonical SMILES obtained
from Drugbank are compared against a collection of
ligand6 sets using the similarity ensemble approach
(SEA) search tool [4]. A list of relevant protein-
receptor families are obtained for each drug, and they
computed Jaccard similarity between the correspond-
ing sets of receptor families for each drug pair.

4. The number of edges in a shortest path between two vertices.
5. Simplified Molecular Input Line Entry Specification
6. A substance that binds with a biomolecule to serve a biological

purpose.

Expression-based: The Spearman rank correlation
coefficient of gene expression responses to drugs re-
trieved from the Connectivity Map Project [16, 17]
are used as a similarity measure between drugs. The
Spearman rank correlation coefficient between two
sets X and Y is calculated as

Spearman(X,Y ) =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
∑
i(yi − ȳ)2

where xi and yi are ranked elements of X and Y .
Side-effect-based: Similarities between drugs are

calculated using the Jaccard score between their com-
mon side-effects obtained from SIDER [42].

Annotation-based: Drugs’ ATC codes are obtained
from DrugBank and matched against the World
Health Organization ATC classification system [43],
where drugs are categorized based on different char-
acteristics. They calculated the similarities using the
semantic similarity algorithm of Resnik [44].

Target-target similarities include the following:
Sequence-based: Perlman et al. [8] compute

sequence-based similarities using the Smith-
Waterman sequence alignment scores, normalized
via the method suggested in [23]—which divides
the pairwise score by the geometric mean of the
alignment scores of each sequence against itself.

Protein-protein interaction network-based: Using an
all-pairs shortest path algorithm, they calculated the
distance between pairs of genes using their corre-
sponding proteins in the human protein-protein in-
teractions network.

Gene Ontology-based: Using the method of Resnik
[44], they calculated the semantic similarity measure
between Gene Ontology annotations, downloaded
from UniProt [45].

Perlman et al. [8] provide more detailed descrip-
tions of these similarities.

6.2 Evaluation Criteria

We use ten-fold cross validation, where each fold
randomly leaves out 10% of the positive and negative
(unknown) interactions for testing. We infer interac-
tions and compare against the held-out interactions,
measuring performance using the area under the ROC
curve (AUC), area under the precision-recall curve
(AUPR) of the positive class, and the precision of
the top n predictions (P@n) where n = 130 (i.e., the
number of positive links held out in each fold) for our
evaluations.

AUC is the most commonly reported measure in
our related publications and it allows us to compare
against the published results of other methods [23, 8,
11] on the same dataset. Lichtnwalter and Chawla [46]
discuss different link prediction evaluation methods.

ROC curves are created by plotting the true positive
rate versus the false positive rate at various thresholds
[47]. Precision-recall (PR) curves are created by plot-
ting the precision (or positive predictive value) versus
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Fig. 7: Network of drug-target interactions in the dataset. Drugs are shown with blue squares and targets with
red circles, where size of the node represent their degree. Similarities are not shown to simplify the graph.

the recall (or true positive rate) at various thresholds.
ROC and PR curves are visually different but they
are highly correlated [48], and PR curves are more
informative in settings with heavy class imbalance,
such as link prediction [46].

Due to this high class imbalance (130 positive to
7,744 negative examples), AUC changes are subtle.
We also report AUPR performance and precision of
the top 130 predictions which can highlight the im-
portance of each model modification more clearly.
This metric is of importance in practice as well, since
only the top portion of the predicted interactions
are typically actionable for domain experts to further
evaluate.

To evaluate our model’s performance with cross-
validation we used the common method of random
sampling of the interactions for hold-outs in each fold.
However, we have to assign a value to all the possible
grounding to perform weight learning on our PSL
model. In order to avoid assigning an arbitrary value
to the held-out interactions in each fold we add a
dummy predicate (IgnoredInteracts) to the rules only
for weight learning. We can avoid grounding of the

rules for the held-out interactions using this predicate.
For example, we change rule (5) to the following form:

¬IgnoredInteracts(D,T2)

∧¬IgnoredInteracts(D,T1)

∧SimilarTargetβ(T1, T2) ∧ Interacts(D,T2)

→ Interacts(D,T1).

(13)

Although this change negatively affects the perfor-
mance of our model in the cross-validation setting, we
believe it provides an unbiased evaluation and avoids
an arbitrary assignment to the held-out variables. This
is only an artifact of the cross validation evaluation
setting.

6.3 Analysis Results
We report the results of our five experimental analysis
in this section.

Rule Structure: We first study the effectiveness
of each assumption for predictions. We compare the
rules based on triads (5 & 6) and the rules based on
tetrads (7). We compare four different settings: the
model with only the triad-based rules, the model with
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only the tetrad-based rules, model with both set of
rules, and model with triads and exclusive tetrads.
We set the blocking parameter (k) to 5 in all models to
control the growth of tetrad-based rules, and we learn
the weights using separate held-out set of interactions
(equal to the size of cross-validation hold-outs) in each
fold.

As Table 1 shows, the rules inspired by triads are
more predictive of the interactions compared to the
rules that are based on tetrads. It may be the case
that, in a collective setting, triad-based rules capture
the effect of tetrad-based rules and perform the best.
This experiment not only provides insight into the
behavior of prediction using triads and tetrads in this
domain, but it also demonstrates how we can easily
test such assumptions using PSL’s flexibility. One can
easily generalize this to quickly evaluate different
hypothesis about interactions.

TABLE 1: Comparison of triad-based and tetrad-based
rules with k = 5

Rules AUC AUPR P@130

Triad-based only 0.920±0.016 0.617±0.048 0.616±0.035

Tetrad-based only 0.775±0.023 0.188±0.029 0.250±0.033

Triad & tetrad 0.909±0.015 0.416±0.047 0.443±0.025

Triad & excl. tetrad 0.924±0.013 0.560±0.048 0.588±0.036

Blocking speedup: Next, we study the effect of
blocking on performance by varying the number of
neighbors (k) and measuring the effect on the PSL
model based on the triad rules (5 & 6). We measure the
completion time in two settings: first, a setup where
we only perform inference, and, second, a setting
where we run weight learning and inference. Table
2 lists the average computation time of ten-fold cross-
validation experiments on computers with a (2 × 4)
2.66 GHz Intel processor and 48GB of RAM.7 The
results show that blocking causes significant improve-
ment in processing time.

Our proposed blocking achieves this speed-up with
no significant performance loss. The columns of Ta-
ble 3 lists the performance as we change the blocking
aggressiveness. The insignificant performance change
as we block more aggressively suggests that, even
with limited number of similarities (i.e., k = 5), PSL
can produce accurate predictions. AUPR results in
Table 3 (Inference + W. learning) show that blocking
sometimes even helps performance and suggests that
the similarities with higher values are most predictive
of interactions. These results suggest that, in the drug-
target interaction domain, models that rely on sparse
similarities with high value are often more predictive
than the ones that include many similarities with
low values. Perlman et al. [8] report relatively similar
findings with their own model.

7. We used machines with slightly different specifications and
under different loads, so the reported times are approximate.

TABLE 2: Blocking speedup with triad-based rules

Condition Time to Complete
k=5 k=15 k=30

Inference only 14mins 3h 9.5h

Inference + Weight learning 30mins 6h 22h

Weight learning: We study the effect of weight
learning by running experiments under two condi-
tions: with all weights set to 5 (arbitrarily hand-
tuned) and with weights being learned from a set of
observed interactions. Table 3 lists the performance
improvement of the models with weight learning with
different k values for blocking.

TABLE 3: Performance variations under the effect of
weight learning with triad-based rules

Condition AUC
k=5 k=15 k=30

Inference
only 0.917±0.017 0.933±0.014 0.928±0.016

Inference +
W. learning 0.920±0.016 0.931±0.016 0.924±0.019

Condition AUPR
k=5 k=15 k=30

Inference
only 0.563±0.047 0.578±0.067 0.504±0.061

Inference +
W. learning 0.617±0.048 0.579±0.062 0.486±0.063

Condition P@130
k=5 k=15 k=30

Inference
only 0.580±0.042 0.585±0.045 0.532±0.051

Inference +
W. learning 0.616±0.035 0.594±0.039 0.515±0.037

It is also notable that the performance improvement
caused by weight learning is more significant than
increasing the number of unblocked similarities used
as evidence. Although weight learning improves the
results, AUC changes are subtle and AUPR and the
precision at the top predictions show the improve-
ment more clearly.

Weight learning performance improvement in
AUPR and AUC (for k = 5) is statistically significant
(p < 0.005).8 Figure 8 plots the average precision of
the top 130 interaction predictions (i.e., P@n) over all
ten folds with and without weight learning. It demon-
strates how weight learning improves the precision of
the predictions, providing steady improvement for the
top 130 predictions.

Figure 9 illustrates the average relative weights
assigned by PSL to triad-based rules for each sim-
ilarity. We normalize the weights by dividing their
value by the learned prior weight, so the resulting

8. We performed paired one-tailed t-test on the corresponding
values of the ten folds.
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Fig. 8: Average precision of the top 130 interaction
predictions for all 10 folds with k = 5.

quantity represents how much more heavily the rule
is weighted than the prior. It is important to note
that neither the absolute nor the relative value of the
weights provide precise insight into the predictive
power of the rules, since the features and predictions
are dependent. Nevertheless, they provide some hints
as to how the PSL model makes its joint prediction.

An example of low rule weight and high prediction
performance is PPI-network-based similarity (Figure
9 and Table 4), which produces high accuracy for a
single-similarity-based model, but has a low normal-
ized weight. A more accurate method of measuring
the effectiveness of each rule (and similarity) for
prediction is building models with single rules (as
described in the next section) and directly measuring
their prediction performance. Even in models with
single similarities, rule weight does not correlate with
prediction power. Figure 9 also shows the rule weights
of models with single similarities, which follows the
previous trend.
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Fig. 9: Relative triad-based rule weights in models
with all similarities included and models with only
one similarity.

Combining similarities: We study the effect of
incorporating multiple heterogeneous drug-drug and
target-target similarities in PSL models. Different sim-
ilarities can replace SimilarTargetβ and SimilarDrugα

in rules (5) and (6) as described in previous sections.
For each similarity metric, we add an instance of the
rule (5) and (6) to the PSL model correspondingly.
We study the situation where PSL models predict new
interactions using only one drug-drug or target-target
similarity versus when they are all combined and the
results are shown in Table 4.

TABLE 4: Prediction based on one similarity and all
similarities combined.

Similarity AUC AUPR P@130

D
ru

gs

Annotation-
based 0.660±0.017 0.224±0.026 0.319±0.026

Chemical-
based 0.670±0.023 0.234±0.042 0.289±0.032

Ligand-based 0.713±0.023 0.270±0.035 0.337±0.037

Expression-
based 0.540±0.025 0.031±0.009 0.069±0.026

Side-effect-
based 0.631±0.016 0.209±0.032 0.271±0.023

Ta
rg

et
s PPI-network-

based 0.781±0.021 0.389±0.047 0.480±0.041

GO-based 0.611±0.023 0.103±0.027 0.213±0.039

Sequence-
based 0.811±0.026 0.516±0.062 0.574±0.055

All Similarities 0.920±0.016 0.617±0.048 0.616±0.035

Ligand-based drug-drug similarity and Sequence-
based target-target similarity generate the best perfor-
mance among models using a single similarity. Nev-
ertheless, there is a significant difference between the
best single similarity setting (AUC=0.811± 0.026 and
AUPR=0.516±0.062) and the all-similarities-combined
setting (AUC=0.920±0.016 and AUPR=0.617±0.048).
This study clearly shows that considering multiple
similarities is critical for optimal prediction accu-
racy and that PSL can efficiently consider the multi-
similarity nature of the problem.

Collective inference: We list the results from
comparing the collective versus non-collective PSL
models in Table 5. Due to high class-imbalance, AUC
does not reflect the change in performance as well as
the other measures.

TABLE 5: Effect of collective inference

Condition AUC AUPR P@130

Non-collective
inference 0.916±0.016 0.556±0.039 0.577±0.039

Collective inference 0.920±0.016 0.617±0.048 0.616±0.035

Collective inference performance improvement in
AUPR and AUC is statistically significant (p < 0.005).9

Figure 10(a) highlights the effect of collective model
by showing the average (over ten folds) precision of

9. We performed paired one-tailed t-test on the corresponding
values of the ten folds.
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the top 130 predictions. Collective modeling improves
the performance in this setting, as it generates a
higher overall precision in the top 130 predictions.
It is notable that non-collective model is only more
effective for the first few predictions. This may be
the results of those interactions being predicted based
on direct observed evidence. However, collective in-
ference outperforms non-collective setting for higher
number of predictions. In addition, collective setting
may be more effective when there are more missing
links to predict. The significance of collective inference
improvement is more clear in Figure 10(b) which
shows the same experiment with three-fold cross val-
idation and 450 top prediction.
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(a) Top 130 prediction via ten-fold cross validation.
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(b) Top 450 prediction via three-fold cross validation.

Fig. 10: Collective vs. non-collective average precision
of the top predictions.

6.4 Predictions Evaluation

Finally, we can compare our results with the re-
ported results of other state-of-the-art methods. Perl-
man et al. [8] report experimental evaluation on the
same dataset. They report state-of-the-art performance
and show that their method significantly outperforms
those of Yamanishi et al. [11] and Bleakley and Yaman-
ishi [23].

Thus, we compare our model’s performance with
Perlman et al. [8]10 using the same experimental set-
ting. We report the results based on our folds that con-
tain 130 positives and 7,744 negative links.11 Table 6
lists the results of different PSL models comparing to
the Perlman et al. [8].

TABLE 6: Comparison with Perlman’s method using
ten-fold cross validation

Methods AUC AUPR P@130

Perlman et al. [8] 0.937±0.018 0.564±0.050 0.594±0.040

PSL triads k = 5 0.920±0.016 0.617±0.048 0.616±0.035

PSL triads k = 15 &
excl. tetrads k = 5

0.937±0.012 0.585±0.056 0.616±0.039

PSL models with triads and blocking parameter
k = 5 score a higher AUPR and P@n. This shows that
our predictions have higher precision. Although we
argue that AUC in such highly imbalanced settings
is not as important, we can match the AUC of the
previous state-of-the-art by using a more complicated
PSL model with triads and exclusive tetrads and using
two different blocking parameters of k for each set
of rules. Since tetrads generate more groundings, we
set k to 5 for tetrads and set k to 15 for triads.
Figure 11 plots the precision of the top 130 predictions
of the PSL model with triad rules and k set to 5
in comparison the predictions of Perlman et al. [8].
The results show that the PSL model with simple,
triad-based rules improves the AUPR and P@n pre-
diction performance of the state-of-the-art methods.
We achieve statistically significant improvements in
AUPR using the PSL triad model with k = 5 over
the Perlman’s method (p < 0.005), and we match the
AUC performance of their method using our second
PSL model with no significant difference (p > 0.49).12

New interaction predictions: Additionally, we
aimed to evaluate our new interaction predictions
by comparing them with new interactions that were
not in our initial dataset. Using NodeXL’s [40] motif
clustering tool, we find targets (or drugs) that share
several drugs (or targets). One example is PTGS1 and
PTGS2, which is shown on the right side of Figure 7.

Three unobserved interactions in this structure
are Minoxidil-PTGS2, Tiaprofenic acid-PTGS1, and
Oxaprozin-PTGS1. Our model ranks Oxaprozin-PTGS1
and Tiaprofenic acid-PTGS1 as the 46th and 158th most
probable interactions out of the 77,444 total interac-
tions, placing them in the top 0.2 percentile of all
possible interactions. Since the time our dataset was

10. We implemented the method of Perlman et al. [8] in cor-
respondence with the authors and reproduced their results. Our
implementation of their method is also available for download.

11. The difference between our AUPR results and the ones
reported in [8] is due to the down-sampling of the unobserved
interactions for testing in their paper. We choose our testing folds
based on the real ratio of positives to negatives

12. We performed paired one-tailed t-test on the corresponding
values of the ten folds.



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 12

0 20 40 60 80 100 120
0.5

0.6

0.7

0.8

0.9

1

1.1

Top Predictions

P
re

ci
si

on
 (

P
@

n)

 

 

PSL triads k=5
Perlman’s method

Fig. 11: Comparing Perlman’s method with PSL’s top
130 predictions using ten-fold cross validation.

collected by Perlman et al. [8], the online databases
have been updated. Examining the latest version of
Drugbank, the database now contains these two inter-
actions.13 Our model ranked Minoxidil-PTGS2 signifi-
cantly lower than the other two at 1,807, and we could
not find any indication in the drug-target interaction
dataset that this interaction exists.14

The two targets are shared between all three drugs
in this structure, hence, only the target-target sim-
ilarities were discriminative. The results show that
PSL effectively uses different similarities between
Oxaprozin and Tiaprofenic acid, and the other targets
in the structure to rank their interactions higher than
the one involving Minoxidil.

Furthermore, there are 197 interactions that were
added to the Drugbank database since our dataset
was collected. We used these newly reported inter-
actions to further evaluate the performance of our
models. We generate ten folds consisting of these new
interactions and samples of the unobserved interac-
tions, to rank these new interactions against all the
other possible predictions. Table 7 lists the perfor-
mance scores of our models and Perlman et al. [8]
on the newly reported interactions.

TABLE 7: Comparison with Perlman’s method using
new interactions

Methods AUC AUPR P@130

Perlman et al. [8] 0.921±0.016 0.309±0.014 0.393±0.018

PSL triads k = 5 0.881±0.001 0.324±0.008 0.456±0.017

PSL triads k = 15 &
excl. tetrads k = 5

0.926±0.001 0.344±0.018 0.460±0.010

Although our more complex model demonstrates
superior numbers on all performance measures, the
predictions made by the PSL model with triads and
k = 5 are more actionable due to higher precision
at the top of the predictions list. That portion of the

13. http://www.drugbank.ca/drugs/DB00991
http://www.drugbank.ca/drugs/DB01600

14. http://www.drugbank.ca/drugs/DB00350

predictions are the most critical for domain experts
to further evaluate. Our more complex PSL model
with triads and tetrads achieves higher AUPR due
to better recall. Figure 12 plots the precision of the
top 150 prediction of the PSL model with triads with
k = 5, the PSL model with triads with k = 15 and
exclusive tetrads with k = 5, and Perlman et al. [8].
The simpler PSL model with triads and k = 5 ranks
the newly reported interactions higher and performs
significantly better than Perlman’s method, especially
beyond the top 40 predictions. Since there is poten-
tial bias in which interactions have been explored
in vitro, these results, while encouraging, should be
interpreted with discretion.
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Fig. 12: Comparing Perlman’s method with PSL’s top
150 predictions using new interactions.

7 DISCUSSION AND CONCLUSION
In this paper, we propose a model using probabilistic
soft logic (PSL) for drug target interaction prediction.
We propose a blocking method and demonstrate how
PSL enables rich, large-scale analysis of drug-target
networks, combining similarities and collective infer-
ence to produce state-of-the-art prediction accuracy
using an interpretable model. In our experimental
evaluation, we isolate the contributions of collective
inference, blocking, the combination of similarities,
and weight learning to prediction quality. Our results
indicate that each of these components plays a posi-
tive role, and the high accuracy and efficiency of the
full PSL model results from their combination.
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[33] Hanna Köpcke, Andreas Thor, and Erhard Rahm. Eval-
uation of entity resolution approaches on real-world
match problems. Proc. VLDB Endow., 3(1-2):484–493,
September 2010.

[34] Steven Euijong Whang, David Menestrina, Georgia
Koutrika, Martin Theobald, and Hector Garcia-Molina.
Entity resolution with iterative blocking. In Proceedings
of the 2009 ACM SIGMOD International Conference on
Management of data, SIGMOD ’09, pages 219–232. ACM,
2009.

[35] Prithviraj Sen, Galileo Mark Namata, Mustafa Bilgic,
Lise Getoor, Brian Gallagher, and Tina Eliassi-Rad.
Collective classification in network data. AI Magazine,
29(3):93–106, 2008.

[36] David S. Wishart, Craig Knox, An Chi Guo, Dean
Cheng, Savita Shrivastava, Dan Tzur, Bijaya Gautam,
and Murtaza Hassanali. Drugbank: a knowledgebase
for drugs, drug actions and drug targets. Nucleic acids
research, 36(suppl 1):D901–D906, 2008.

[37] Minoru Kanehisa, Susumu Goto, Miho Furumichi, Mao
Tanabe, and Mika Hirakawa. Kegg for representation
and analysis of molecular networks involving diseases
and drugs. Nucleic acids research, 38(suppl 1):D355–
D360, 2010.

[38] Yanbin Liu, Bin Hu, Chengxin Fu, and Xin Chen. Dcdb:
drug combination database. Bioinformatics, 26(4):587–
588, 2010.

[39] Stefan Günther, Michael Kuhn, Mathias Dunkel, Mon-
ica Campillos, Christian Senger, Evangelia Petsalaki,
Jessica Ahmed, Eduardo Garcia Urdiales, Andreas
Gewiess, Lars Juhl Jensen, et al. Supertarget and mata-
dor: resources for exploring drug-target relationships.
Nucleic acids research, 36(suppl 1):D919–D922, 2008.

[40] Derek Hansen, Ben Shneiderman, and Marc A Smith.
Analyzing social media networks with NodeXL: Insights
from a connected world. Morgan Kaufmann, 2010.

[41] Christoph Steinbeck, Christian Hoppe, Stefan Kuhn,
Matteo Floris, Rajarshi Guha, and Egon L Willighagen.
Recent developments of the chemistry development
kit (CDK)—an open-source java library for chemo-and
bioinformatics. Current pharmaceutical design, 12(17):
2111–2120, 2006.

[42] Michael Kuhn, Monica Campillos, Ivica Letunic,
Lars Juhl Jensen, and Peer Bork. A side effect resource
to capture phenotypic effects of drugs. Molecular
systems biology, 6(1), 2010.
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