Motivation

 Spam is pervasive in social networks.
* Traditional approaches don't work well:
 Spammers can manipulate content-based
approaches. E.g., change patterns,
split malicious content across messages.
« Content may not be available due to
privacy reasons.
 Spammers have more ways to interact with
users in social networks compared to email
and the web.

Problem Statement

 \We have a time-stamped multi-relational social
network with legitimate users and spammers.

* links = actions at time t (e.g. profile view,
message, or poke).

« Task:
Snapshot of the social network +
Labels of already identified spammers

Find other spammers in the network.
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Graph Structure Features
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In each relation graph we compute:

 PageRank: Score for each node based on
number and quality of links to it.

 Degree: Total degree, in-degree, and out-
degree of each node.

« k-Core: Centrality measure via recursive
pruning of the least connected vertices.

* Graph Coloring: Assignment of colors to
vertices, where no two adjacent vertices share
the same color.

« Connected Components: Group of vertices
with a path between each.

* Triangle Count: Number of triangles the
vertex participates in.

Contribution and Proposed Solution

« Use only the multi-relational meta-data for
spammer detection:
* Graph Structure.
* Action Sequences.

« Collectively refine user generated abuse
reports.

Data

« Adata sample from Tagged.com, including all
active users and their activities in a
specific timeframe.

« Tagged is a social network for meeting new
people with multiple methods for users to
Interact.

* |t was founded in 2004 and has over 300
million registered members.
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Data Sample Statistics.

Sequence-Based Features

« Sequential k-gram Features: Short sequence
segment of k consecutive actions, to capture
the order of events.

* Mixture of Markov Models: Also called chain-
augmented or tree-augmented naive Bayes
model to capture longer sequences.

Graph Structure and Sequence-Based Results
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— Complete Framework — Graph Features
— Sequence Features — Seq. & Graph Feat.

— Complete Framework — Graph Features
— Sequence Features — Seq. & Graph Feat.

« Complete framework includes graph structure and
sequence features, and three demographic features
(i.e., age, gender, and time since registration).

 We used Graphlab Create for feature extraction and
classification with Gradient-Boosted Decision Trees.

Engineering

HL-MRFs and Probabilistic Soft Logic

* Hinge-loss Markov random fields (HL-MRFs)
are a general class of conditional, continuous
probabilistic models.

* Probabilistic soft logic (PSL) uses a first-order

logical syntax as a templating language for
HL-MREFs.

* General rules:
w: P(A,B)AQ(B,C) — R(A, C)

* Predicates have soft truth values between
0,1]

* Rule satisfaction:  7Tpody — Thead
I(Tbody) < I(The&d)

* Distance from satisfaction:

57~ — maX{O, I(Tbody) — ](Thead))

* Most probable explanation (MPE) by
optimizing:
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Collective Classification with Reports

Users can report abusive behavior, but the reports
contain a lot of noise.

 Model using only reports:

REPORTED(v1,v2) — SPAMMER(vs)
~SPAMMER(v)

* Model using reports and credibility of the
reporter:

CREDIBLE(v1) N REPORTED(v1,v2) - SPAMMER(v2)
PRIOR-CREDIBLE(v) - CREDIBLE(v)
—PRIOR-CREDIBLE(v) -—CREDIBLE(v)
~SPAMMER(v)

* Model using reports, credibility of the reporter,
and collective reasoning:

CREDIBLE(v1) A REPORTED(v1,vs) — SPAMMER(v2)

SPAMMER(v2) A REPORTED(v1,v2) — CREDIBLE(v1)

~SPAMMER(v2) A REPORTED(v1 ,v2) ——CREDIBLE(v:)
PRIOR-CREDIBLE(v) — CREDIBLE(v)
~PRIOR-CREDIBLE(v) ——CREDIBLE(v)
~SPAMMER(v)

Results of Classification Using Reports

Experiment AUPR AUROC

Reports Only 0.674+0.008 0.61140.007
Reports & Credibility 0.869+0.006 0.86240.004

Reports & Credibility & Col- 0.88440.005 0.87340.004
lective Reasoning




