

Collective Spammer Detection in Evolving Multi-Relational Social Networks

Shobeir Fakhraei^{1,2}, James Foulds^{2,} Madhusudana Shashanka³, and Lise Getoor²

¹University of Maryland, College Park, MD, USA ²University of California, Santa Cruz, CA, USA ³if(we) Inc. (Currently Niara Inc., CA, USA)

Motivation

- Spam is pervasive in social networks.
- Traditional approaches don't work well:
 - Spammers can manipulate content-based approaches. E.g., change patterns, split malicious content across messages.
 - Content may not be available due to privacy reasons.
- Spammers have more ways to interact with users in social networks compared to email and the web.

Graph Structure Features

In each relation graph we compute:

• **PageRank:** Score for each node based on number and quality of links to it.

HL-MRFs and Probabilistic Soft Logic

- Hinge-loss Markov random fields (HL-MRFs) are a general class of conditional, continuous probabilistic models.
- Probabilistic soft logic (PSL) uses a first-order logical syntax as a templating language for HL-MRFs.

• General rules:

$\omega: F$	$\mathcal{P}(A,B)$	$\wedge Q(B,C)$	$) \rightarrow R(A, C)$
-------------	--------------------	-----------------	-------------------------

Problem Statement

- We have a time-stamped multi-relational social network with legitimate users and spammers.
- links = actions at time t (e.g. profile view, message, or poke).

 Task:

 Snapshot of the social network +

 Labels of already identified spammers

Find other spammers in the network.

- **Degree:** Total degree, in-degree, and outdegree of each node.
- **k-Core:** Centrality measure via recursive pruning of the least connected vertices.
- **Graph Coloring:** Assignment of colors to vertices, where no two adjacent vertices share the same color.
- **Connected Components:** Group of vertices with a path between each.
- **Triangle Count:** Number of triangles the vertex participates in.

Sequence-Based Features

- Sequential k-gram Features: Short sequence segment of k consecutive actions, to capture the order of events.
- Mixture of Markov Models: Also called chain-

- Predicates have soft truth values between
 [0,1]
- Rule satisfaction: $r_{body} \rightarrow r_{head}$

 $I(r_{body}) \leq I(r_{head})$

• Distance from satisfaction:

 $\delta_r = \max\{0, I(r_{body}) - I(r_{head})\}$

Most probable explanation (MPE) by optimizing:

$$f(\mathcal{I}) = \frac{1}{\mathcal{Z}} \exp\left[-\sum_{r \in \mathcal{R}} \omega_r \delta_r(\mathcal{I})\right]$$

Collective Classification with Reports

- Users can report abusive behavior, but the reports contain a lot of noise.
- Model using only reports:

Contribution and Proposed Solution

- Use only the multi-relational meta-data for spammer detection:
 - Graph Structure.

- Action Sequences.
- Collectively refine user generated abuse reports.

Data

- A data sample from Tagged.com, including all active users and their activities in a specific timeframe.
- Tagged is a social network for meeting new people with multiple methods for users to interact.
- It was founded in 2004 and has over 300 million registered members.

Δ	Entity	Count
汜	$ \mathcal{V} $ (total users)	5,607,454
K	$ \mathcal{E} $ (total actions)	$912,\!280,\!409$
¥.	$\max(\mathcal{E}_r)$ (number of actions that are	$350,\!724,\!903$
Ê.	most frequent action type)	
	$\min(\mathcal{E})$ (number of actions that are	137 550

augmented or tree-augmented naive Bayes model to capture longer sequences.

Graph Structure and Sequence-Based Results

Complete framework includes graph structure and sequence features, and three demographic features

 $REPORTED(v_1, v_2) \rightarrow SPAMMER(v_2)$ $\neg SPAMMER(v)$

- Model using reports and credibility of the reporter:
- $CREDIBLE(v_1) \land REPORTED(v_1, v_2) \rightarrow SPAMMER(v_2)$ $PRIOR-CREDIBLE(v) \rightarrow CREDIBLE(v)$ $\neg PRIOR-CREDIBLE(v) \rightarrow \neg CREDIBLE(v)$ $\neg SPAMMER(v)$
- Model using reports, credibility of the reporter, and collective reasoning:

 $\begin{aligned} CREDIBLE(v_1) \land REPORTED(v_1, v_2) \rightarrow SPAMMER(v_2) \\ SPAMMER(v_2) \land REPORTED(v_1, v_2) \rightarrow CREDIBLE(v_1) \\ \neg SPAMMER(v_2) \land REPORTED(v_1, v_2) \rightarrow \neg CREDIBLE(v_1) \\ PRIOR-CREDIBLE(v) \rightarrow CREDIBLE(v) \\ \neg PRIOR-CREDIBLE(v) \rightarrow \neg CREDIBLE(v) \\ \neg SPAMMER(v) \end{aligned}$

Results of Classification Using Reports					
Experiment	AUPR	AUROC			
Reports Only	0.674 ± 0.008	0.611 ± 0.007			
Dementer le Crealilailiter	0.960 ± 0.000	0.969 ± 0.004			

• We used Graphlab Create for feature extraction and

