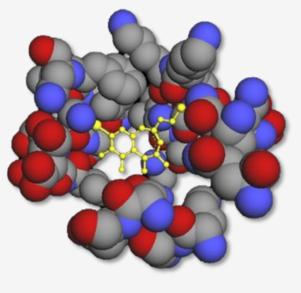


Collective Inference and Multi-Relational Learning for Drug–Target Interaction Prediction

Shobeir Fakhraei¹, Bert Huang¹ and Lise Getoor^{1,2} ¹University of Maryland, College Park, MD, USA ²University of California, Santa Cruz, CA, USA

Poly-pharmacology

 Drugs are organic small molecules that bind to bio-molecular targets to activate/inhibit their functions.



- Drug affect multiple targets, causing:
 - Adverse side-effects
 - Unexpected therapeutic effect

Probabilistic Soft Logic (PSL)

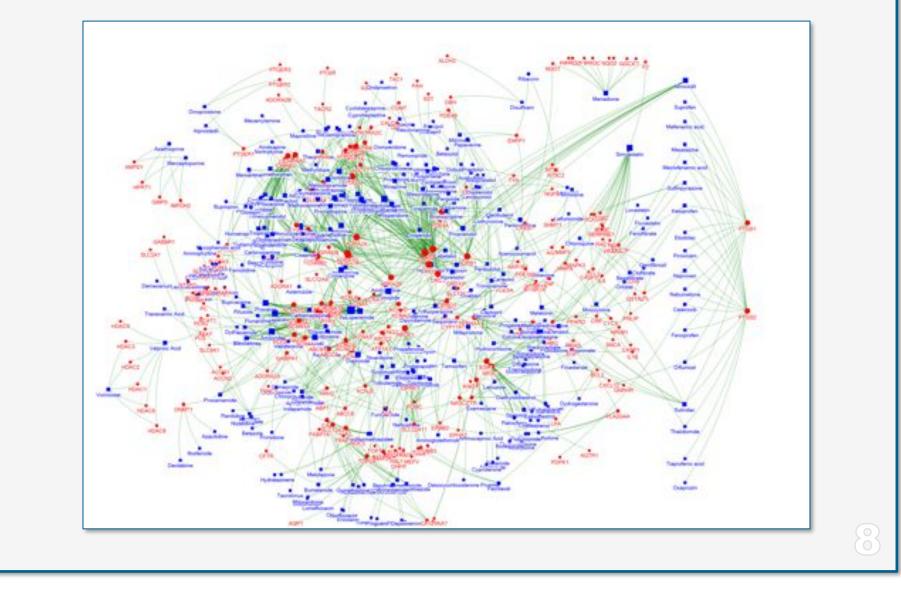
- PSL: Declarative language based on first-order logic to express collective probabilistic inference problems.
- General Rules:

 $\omega: P(A,B) \land Q(B,C) \to R(A,C)$

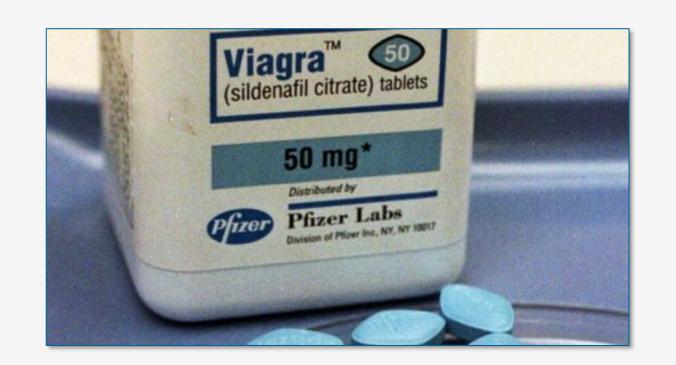
- Predicates have soft truth values between [0,1]
- Rule Satisfaction: $r_{body} \rightarrow r_{head}$

DataSet

- 315 Drugs and 250 Targets.
- 1,306 observed Interactions out of 78,750 possible.
- 3 target-target and 5 drug-drug similarities.
- We used 10-fold cross-validation for evaluation.



Drug Repurposing



Sildenafil was originally developed for pulmonary arterial hypertension

$I(r_{body}) \le I(r_{head})$

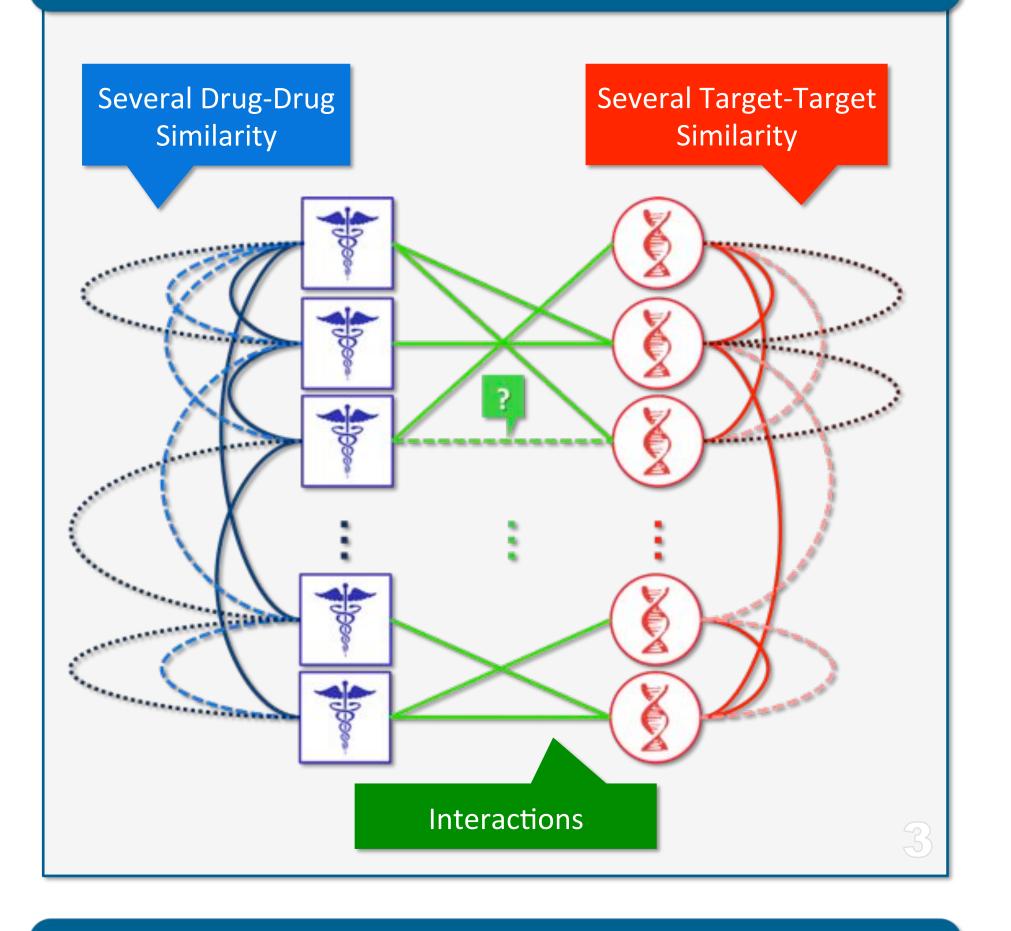
• Distance from satisfaction:

 $\delta_r = \max\{0, I(r_{body}) - I(r_{head})\}$

Most probable explanation (MPE) by optimizing:

$$f(\mathcal{I}) = \frac{1}{\mathcal{Z}} \exp \left[-\sum_{r \in \mathcal{R}} \omega_r \delta_r(\mathcal{I})\right]$$

Drug-Target Interaction Network



Drug-Target Interaction Predicates

Interacts(D,T)

 $Similar Drug_{\alpha}(D_1, D_2)$

α indicates different drug-drug
 similarities including: annotation based, chemical-based, ligand based, expression-based, side effect-based

Combining Similarities

Models with only one similarity

VS.

Model with all similarities

Similarities		AU-ROC	AU-PR	p@130
Drugs	Annotation-based	0.788 ± 0.022	0.122 ± 0.016	0.198 ± 0.019
	Chemical-based	0.755 ± 0.023	0.064 ± 0.015	0.155 ± 0.025
	Ligand-based	0.774 ± 0.025	0.069 ± 0.014	0.151 ± 0.027
	Expression-based	0.606 ± 0.024	0.005 ± 0.001	0.020 ± 0.009
	Side-effect-based	0.726 ± 0.015	0.068 ± 0.015	0.151 ± 0.032
	PPI-network-based	0.851 ± 0.021	0.167 ± 0.046	0.225 ± 0.045
Target	GO-based	0.678 ± 0.029	0.025 ± 0.006	0.080 ± 0.022

$Similar Target_{\beta}(T_1, T_2)$

β indicates different target-target
similarities including: sequencebased, PPI-network-based,
gene ontology-based

	Sequence-based	0.826 ± 0.027	0.129 ± 0.034	0.213 ± 0.045
All Similarities Combined		0.931 ± 0.018	0.190 ± 0.032	0.249 ± 0.041

Combining multiple similarities significantly improves performance.

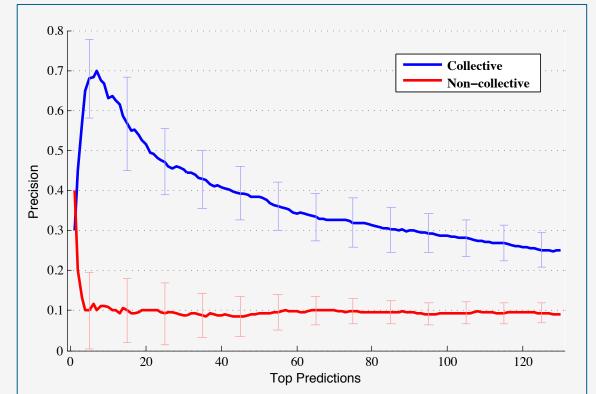
Collective Inference

Collective

 $Similar Drug_{\alpha}(D_{1}, D_{2}) \wedge Interacts(D_{2}, T) \rightarrow Interacts(D_{1}, T)$ $Similar Target_{\beta}(T_{1}, T_{2}) \wedge Interacts(D, T_{2}) \rightarrow Interacts(D, T_{1})$ **VS.**

Non-Collective

 $Similar Drug_{\alpha}(D_1, D_2) \land Observed Interacts(D_2, T) \rightarrow Interacts(D_1, T)$ $Similar Target_{\beta}(T_1, T_2) \land Observed Interacts(D, T_2) \rightarrow Interacts(D, T_1)$



Studies

- Collective Inference:
 The effect of jointly
 reasoning over
 interdependent
 interactions.
- Combining Similarities: The effect of incorporating multirelational

