
Drug-Target Interaction Prediction 
for Drug Repurposing
with Probabilistic Similarity Logic
SHOBEIR FAKHRAEI*
LOUIQA RASCHID
LISE GETOOR

University of Maryland, College Park, MD, USA



BioKDD 2013 | Chicago | Drug-Target Interaction Prediction …

Outline

• Drug Repurposing
• Drug-Target Interaction Network 
• Probabilistic Similarity Logic (PSL)
• Drug-Target Interaction Prediction with PSL
• Experimental Results



BioKDD 2013 | Chicago | Drug-Target Interaction Prediction …

New Drug Development
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• Time Consuming: New drugs take a decade to reach market.
• Costly: Development cost reaches 2 billion US dollars. 



Valley of death: 
Most novel drug candidates 

never get approved!
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Drugs

• Drugs: 
Organic small molecules that 
bind to bio-molecular targets 
to activate/inhibit their 
functions

• Drug often affect multiple targets.
• Poly-pharmacology is an area of 

growing interest
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Drug Repurposing

• Drug Affecting Multiple Targets:
• Adverse side-effects
• Unexpected therapeutic effect

• Drug Repurposing/Repositioning: 
Finding new uses for approved 
drugs.

• No need for tests required for a 
new therapeutic compound 
(Already approved)



Sildenafil was originally developed for 
pulmonary arterial hypertension
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Need for Systematic Search

• Most new treatment are discovered by chance 
during clinical trials. 

• There is a need for a better systematic approach. 

• Experimental identification 
of drug-target  associations is 
labor intensive and costly

• A better solution?



Using computational predictions 
to focus biological search
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Drug-Target Interaction Network

… ……

Interaction

Drug Target
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Drug-Target Interaction Network + 
Similarities

… ……

Drug-Drug 
Similarity

Target-
Target 

Similarity
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Multiple Similarities

. . . 

Chemical-
based

Sequence-
based

Ligand-
based

PPI-
network-

based
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based

Gene 
Ontology-

based
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D-T Interaction Network + 
Multiple Similarities

… ……

?
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Drug-Target Interaction Prediction

• Data: 
• Drug-target interaction network 
• Set of drug-drug similarities 
• Set of target-target similarities

• Task: 
• Link Prediction (New drug-target interactions) 
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Challenges
• Data is not originally flat:

• Classifiers need a set of features and 
instances. 

• Instances: all interactions in the 
network (pairwise) 
or only interaction of one drug or 
target. 

• Features: Feature engineering

Features
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Not independent• Not Independent and Identically 
Distributed (IID):  Interactions depend on 
each other (a drug tends to interact with 
similar targets)

• Multi-relational: 
• Drug-Target Interactions
• Different Drug-Drug Similarities
• Different Target-Target Similarities



Probabilistic Similarity Logic
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Probabilistic Similarity Logic (PSL)

• Declarative language based on logic to express 
collective probabilistic inference problems.

• Logical foundation

• Probabilistic foundation

• Weight Learning



Logic Foundation
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General Rules

• Can use predicate to define relations between variables. 
e.g. Interacts(D, T) 

• Grounding: Instantiation of predicates with data. 
e.g. Interacts(acetaminophen, cox2) 

• Groundings have a soft-truth values between [0, 1]

P A, B ∧ Q B, C → R A, C

Predicates

Variables

e.g., 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑠 𝐷, 𝑇2 ∧ 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑇𝑎𝑟𝑔𝑒𝑡 𝑇1, 𝑇2 → 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑠 𝐷, 𝑇1
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Lukasiewicz t-norm and co-norm

• 𝑃  ∧ 𝑄 = 𝑚𝑎𝑥 0, 𝑃 + 𝑄 − 1

• 𝑃  ∨ 𝑄 = 𝑚𝑖𝑛 1, 𝑃 + 𝑄

• ¬𝑃 = 1 − 𝑃

𝑃
 ∧
𝑄

P QP Q

𝑃
 ∨
𝑄

P A, B ∧ Q B, C → R A, C
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Satisfaction

• Interpretation (I) : an assignment of soft-truth 
values to a set of groundings.

P A, B ∧ Q B, C → R A, C

0.7 0.8

max 0, 0.7 + 0.8 − 1 = 0.5

≥ 0.5

• Rule satisfaction: rbody → rhead is satisfied 

when I rbody ≤ I rhead
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Distance to Satisfaction

𝑑𝑟 𝐼 = 𝑚𝑎𝑥 𝐼 𝑟𝑏𝑜𝑑𝑦 − 𝐼 𝑟ℎ𝑒𝑎𝑑 , 0

P A, B ∧ Q B, C → R A, C

P A, B ∧ Q B, C → R A, C

0.7 0.8

max 0, 0.7 + 0.8 − 1 = 0.5

0.7

0.7 0.8 0.2

𝑑𝑟 𝐼 = 0.0

𝑑𝑟 𝐼 = 0.3
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Rule Weights

w : P A, B ∧ Q B, C → R A, C

• Rule can have weights which corresponds to 
importance of the rule.

• Can come from domain knowledge

• Can be learned from data
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Review

• PSL program + Dataset  Set of ground rules

• Some groundings (predicates) have known truth values 
and some have unknown truth values.

• Every Interpretation of unknown groundings (predicates) 
 different weighted distances to satisfaction

• How to decide which Interpretation is best?



Probabilistic Foundation
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Probabilistic Model

Probability 

density over 

interpretation I

Normalization 

constant
Set of ground 

rules

Distance 

exponent 

in {1, 2}

Rule’s weight

Rule’s distance to satisfaction:
𝒅𝒓 𝑰 = 𝒎𝒂𝒙 𝑰 𝒓𝒃𝒐𝒅𝒚 − 𝑰 𝒓𝒉𝒆𝒂𝒅 , 𝟎

𝑓 𝐼 =
1

𝑍
𝑒𝑥𝑝 − 

𝑟∈𝑅

𝑤𝑟 𝑑𝑟 𝐼
𝑝
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• Given a set of observed groundings infer the values of 
unknown groundings  

• e.g., Given a set of drug-target interactions + a set of D-D 
and T-T similarities infer the value of other interactions.   

Inferring Most Probable Explanations

• Convex optimization: perform 
inference using the alternating 
direction method of multipliers 
(ADMM) [Bach et al., NIPS 2012]

• Fast, scalable, and straightforward 
• Optimize sub-problems (ground 

rules) independently.



Weight Learning
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Weight Learning

• Learn the weights from training data 

• Various methods: 
• Approximate maximum likelihood [Broecheler et al., UAI 10]

• Maximum pseudo-likelihood 

• Large-margin estimation

w : P A, B ∧ Q B, C → R A, C



BioKDD 2013 | Chicago | Drug-Target Interaction Prediction …

PSL Summary

• Design probabilistic models using declarative 
language
• Syntax based on first-order logic

• Inference of most-probable explanation is fast 
convex optimization (ADMM)

• Learning algorithms for training rule weights 
from labeled data.



Drug-Target Interaction Prediction 
with PSL
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Predicates

• Interacts D, T

• SimilarTargetβ T1, T2
• e.g. β can be Sequence-based, PPI-network-

based, Gene Ontology-based.

• SimilarDrugα D1, D2
• e.g. α can be Chemical-based, Ligand-based, 

Expression-based, Side-effect-based, Annotation-
based.



Drug-Target Interaction Prediction Rules



BioKDD 2013 | Chicago | Drug-Target Interaction Prediction …

Triad-based rules (Targets)

2

1

?

𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑠 𝐷, 𝑇2 ∧ 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑇𝑎𝑟𝑔𝑒𝑡𝛽 𝑇1, 𝑇2 → 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑠 𝐷, 𝑇1

• Drugs tend to interact with similar targets
(friend of friend is a friend)
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Triad-based rules (Drugs)

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝐷𝑟𝑢𝑔𝛼 𝐷1, 𝐷2 ∧ 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑠 𝐷2, 𝑇 → 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑠 𝐷1, 𝑇

• Targets tend to interact with similar drugs
(friend of friend is a friend)

1

2

?
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Tetrad-based Rules (Similar Edges)

1

2 2

1

?

• Similar edges are likely to form in a graph

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝐷𝑟𝑢𝑔𝛼 𝐷1, 𝐷2 ∧ 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑇𝑎𝑟𝑔𝑒𝑡𝛽 𝑇1, 𝑇2 ∧ 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑠 𝐷2, 𝑇2
→ 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑠 𝐷1, 𝑇1
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Negative Prior

• Negative prior indicates “Interacts” predicate is 
most likely false

• i.e., most drugs and targets do not interact 

¬ 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑠 𝐷, 𝑇

X
X

X
X

X
X
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Size of the problem

• Total ground triad-based rules can be: 

𝑂 𝐷 × 𝑇 × 𝐷 × 𝛼 + 𝑇 × 𝛽

All possible 
interactions

Triads based on 
drug similarities

for an interaction

Triads based on 
target similarities
for an interaction

N
u

m
b

e
r 

o
f d

ru
gs

N
u

m
b

er 
o

f targets

N
u

m
b

e
r 

o
f d

ru
g 

sim
ilarities

N
u

m
b

e
r 

o
f target 

sim
ilarities

• e.g., in our experiments it was 180M

• For tetrad-based rules the situation is even worst!



Blocking
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Blocking

• Limit some of the rules from being grounded

• Ignore some of the less significant similarities between 
drugs and between targets. 
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Same Threshold for All Similarities 

• Fixed threshold either ignores most of the values in one 
similarity or includes most of the values from the other

?
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A Threshold for Each Similarity

• Same problem for individual drug or target!

?
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K-Nearest Neighbors-based

• Preserve the k-highest values in each similarity for each 
drug and each target and set the others to zero.

……

……

k-most similark-most similar



PSL Advantages 



BioKDD 2013 | Chicago | Drug-Target Interaction Prediction …

PSL Advantages 

• Collective Inference (No IID 
assumption): Results in global 
information propagation through 
the network.

?

• Class Imbalance: PSL can handle huge class-
imbalance problems in link prediction 
problems.

• PSL captures the original structure

• Inference based on 
Interpretable rules 



Experimental Evaluation
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Dataset

• 315 Drugs 

• 250 Targets

• Interaction: [Knox et al. 2011]

• 1,306 observed interactions

• 78,750 possible interactions

• Similarities: [Perlman et al. 2011]

• 3 target-target similarities

• 5 drug-drug similarities
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Drug-Drug Similarities [Perlman et al. 2011]

• Chemical-based: 

• Jaccard similarity of the SMILES fingerprints

• Ligand-based: 

• Jaccard similarity between protein receptor families extracted via 
matched ligands with drugs SMILES

• Expression-based:

• Spearman correlation of gene expression responses to drugs using 

Connectivity Map.

• Side-effect-based: 

• Jaccard similarity between drugs side-effects from SIDER

• Annotation-based: 

• Semantic Similarity of Drugs based on the World Health Organization ATC 
classification system
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Target-Target Similarities [Perlman et al. 2011]

• Sequence-based: 

• Smith-Waterman sequence alignment scores

• Protein-protein interaction network-based:

• The distance in the protein-protein interactions network using all-pairs 
shortest path.

• Gene ontology-based:

• Semantic similarity between Gene ontology annotations
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Triad Rules

Rule AUROC

Drug-Drug 
Similarity

Annotation-based 0.685 ± 0.026

Chemical-based 0.714 ± 0.030

Ligand-based 0.751 ± 0.030

Expression-based 0.584 ± 0.025

Side-effect-based 0.614 ± 0.030

Target-Target 
Similarity 

PPI-network-based 0.816 ± 0.026

GO-based 0.608 ± 0.029

Sequence-based 0.842 ± 0.019

All rules (similarities) 0.931 ± 0.018
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Triad Rules:
Comparison with reported results

Method AUROC Condition

PSL 0.931 ± 0.018
Without Sampling
(10 Fold C.V.)

Perlman et al. 2011 0.935
With Sampling
(Reported Results)

Yamanishi et al. 2008 0.884

Bleakley et al. 2009 0.814
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Triad Rules: 
Blocking and Weight Learning

Condition AUROC

K=5 K=15 K=30

All weights fixed 0.926 ± 0.016 0.929 ± 0.020 0.923  ± 0.021

Condition Time to Complete (10-folds)

K=5 K=15 K=30

All weights fixed 12 mins 3 h 9 h

+ Weight learning 0.930 ± 0.016 0.931 ± 0.018 0.924  ± 0.21

+ Weight learning 1 h 10 h 28 h
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Triad Rules: 
Precision of Top 100 Predictions 
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Triad and Tetrad based rules

Method AUROC with k=5

Triad-based Rules 0.930 ± 0.016

Tetrad-based Rules 0.796 ± 0.025

Triad-based & Tetrad-based 0.913 ± 0.017
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Conclusion

• Identified challenges of network-based drug-target interaction 
prediction.

• Described PSL framework to address them:

• Captures original network structure

• Is a declarative language to implement different rules

• Performs collective inference (No IID assumption)

• Weight learning based on training data

• Matched performance of the state-of-the-art with simple triad-
based rules.

• The proposed method can easily be applied to other tasks with 
similar structures.
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