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Dimension Reduction
 Prediction accuracy of practical machine 

learning algorithms degrades when 
faced with many features that are not 
necessary for predicting the desired 
output.

 Feature Construction / Extraction 
• Construct new features based on the original 

data 
e.g. PCA and ISOMAP.

 Feature Selection / Ranking
• Choose features from the original feature set. 

e.g. Filter and Wrapper methods.
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Feature Selection / Ranking

 Improves the prediction performance.

 Eases understanding of the underlying 

process that generated the data. 

 Reduces measurement and storage 

requirements. 

 Facilitates data visualization.

 Reduces training and utilization times.
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Feature Ranking

 The output of the process is a ranked 

list of features according to a criteria.



 Variable ranking is not necessarily 

used to build predictors:

• Understanding of the underlying data. 

• e.g. which medical test is more accurate 

or reliable than the others in a diagnosis.
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Consensus Feature Ranking

 Ensemble (consensus) methods have 

been used to mitigate the problems of 

traditional methods such as poor 

accuracy, bias, and stability. 


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Motivation



 Score is a Single Variable Classifier

 Feature score is the predictive 

performance of a classifier build based 

on only that single feature.
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Motivation


 The effect of inclusion of classifiers in the 
combination (ensemble function) has been 
studies to see which classifier plays a 
positive/negative role.

• Logistic-Regression

• Support Vector Machines (SVM)

• K-nearest Neighbors

• Naïve Bayes

• Bagging 
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Biomedical Datasets

 When applying Feature Ranking 

methods on medical datasets, one has 

to consider the common 

characteristics of medical datasets: 

• Class-imbalanced data 

• Missing values
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Missing Value / Class-Imbalance

 Missing value estimation and imputation 
negatively affects the reliability of the model.

 We performed the study only based on 
properly recorded values and missing values 
were eliminated.

• Adversely affecting the imbalance distribution

 We used the area under receiver operating 
characteristic (ROC) curve (AUC) as a 
performance evaluator for individual features, 
to address the balance problem. 
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Framework
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 Experimental Framework:



Evaluation
 α features from the top of the ranked 

features were selected and the predictive 
power of this feature subset was tested with a 
classifier via cross validation. 

 To use the maximum possible instances for 
each feature subset, we used the samples 
that have all the values for only the features 
in the subset being evaluated. 

 The number of instances varies for each 
feature subset, making the comparison of the 
ranking methods with different feature 
subsets difficult. 
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Performance Index
 To mitigate the mismatching number of 

instances. 

 n is the number of features considered in the 
calculation.

 c is the evaluating classifier. 

 Fi is the set of i features with the highest score

 Fi_ins is the numbers of instances that have all 
the values for features in Fi. 

 AUC(c(Fi)) represents the average AUC of ROC 
for evaluation of on c, using the leave-one-out 
technique. 
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Performance Index

 A consideration in this formula is that the 
ranking methods that achieve a higher 
accuracy with fewer features and 
more instances are preferable.

 For this reason, the number of features 
appears in the weight factor as 1/i and 
the number of instances as Fi_ins . 
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Experiments Environment

 The dataset used in the experiments is 

from Human Brain Image Database 

System (HBIDS), developed in the 

Radiology Department of Henry Ford 

Health System (Detroit, Michigan USA). 

 The main task in this dataset is a binary 

classification that predicts the patients’ 

lateralization (side of abnormality). 

 The database contains 197 medical 

features and 145 patients.
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Some features in HBIDS
 Semiology, 

 Pre- and postoperative neuropsychological profiles

 Location of surgery, 

 Surgery outcome according to the Engel classification. 

 Interictal waveforms, their location and predominance 
as well as ictal onset location. 

 Both magnetic resonance (MR) and single photon 
emission computed tomography (SPECT) (ictal and 
interictal) imaging is included with the provision for 
quantitative semi-automated assessment of 
compartmental volume, fluid-attenuated inversion 
recovery (FLAIR) mean signal and standard deviation 
and texture analysis 

 Compartmentalized ictal SPECT subtraction image 
analysis is also available.
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HBIDS Missing Values

 Missing values were identified for: 

• EEG features in 21% of cases

• Wada studies in 31% of cases

• Imaging features in 46% of cases

• The remaining features in about 20% of 

cases on average.
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Experimental Results
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Evaluation with SVM Evaluation on Bagging

Evaluation on K-Nearest-Neighbors 



Experimental Results
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Evaluation on Logistic-Regression Evaluation on Naïve-Bayes



Observations

 Evaluation with SVM:

◦ SVM: Neutral

◦ Naïve-Bayes: Positive

◦ K-Nearest Neighbors: Negative

◦ Bagging: Negative

◦ Logistic Regression: Positive

 Evaluation with Bagging:

◦ SVM: Neutral

◦ Naïve-Bayes: Negative

◦ K-Nearest Neighbors: Neutral

◦ Bagging: Neutral

◦ Logistic Regression: Negative

 Evaluation with K-NN:

◦ SVM: Neutral

◦ Naïve-Bayes: Negative

◦ K-Nearest Neighbors: Neutral

◦ Bagging: Neutral

◦ Logistic Regression: Negative

 Evaluation with Naïve-Bayes:

◦ SVM: Neutral

◦ Naïve-Bayes: Negative

◦ K-Nearest Neighbors: Negative

◦ Bagging: Neutral

◦ Logistic Regression: Neutral
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Observations
 Performance of the consensus feature 

ranking with a classifier is not highly 
dependent on inclusion of that 
classifier itself in the fusion. 

 Therefore, features ranked based on 
ensemble of scores from multiple 
classifiers are likely to perform well on 
unseen classifiers.

 This ranking plays an important role in 
data-warehousing, where data are 
gathered with the possibility to be used 
with new emerging classifiers in the 
future.
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Thank you 

If you are interested to get more details about this research please contact 

Shobeir Fakhraei {shobeir@wayne.com}
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