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mRecent study by Nexgate in 2013:

Spam grew by more than 300% in half a year
1 in 200 social messages are spam

5% of all social apps are spammy
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m What’s different about social networks?

Spammers have more ways to interact with users
m Messages, comments on photos, winks,...

They can split spam across multiple messages

More available info about users on their profiles!
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Spammers are getting smarter!

Traditional Spam:

| Want some replica luxury
watches?
Click here:
http://SpammyLink.com

(Intelligent) Social Spam:

Hey Shobeir!
Nice profile photo.I live

in Bay Area too. Wanna

\ chat?

Mary

Sure! :) -
Shobeir

Realistic Looking Conversation .

| I'm logging off here., too
many people pinging
me!

I really like you, let’s
chat more here:
http://SpammyLink.com




Tagged.com

0 TAGGED

m Founded in 2004, is a social networking site which
connects people through social interactions and games

m Over 300 million registered members

m Data sample for experiments (on a laptop):
5.6 Million users (3.9% Labeled Spammers)
912 Million Links
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Profile view Message

Link = Action at time t

Actions = Profile view, message, poke, report abuse, etc
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Graph Structure Features

m Extract features for each relation graph

» PageRank
= Degree statistics
m Total degree

m In degree
m Out degree

m k-Core X

» Graph coloring
» Connected components

» Triangle count

(8 features for each of 10 relations)

Viewing profile
Friend requests
Message

Luv

Wink

Pets game

m Buying

m Wishing
MeetMe game
m Yes

m No

Reporting abuse



Graph Structure Features

Viewing profile

Reporting abuse

Djjj Triangle Count
Djjj Out-Degree
Djjj In-Degree
Djjj Graph Coloring ]

@t o
Djjj PageRank

Djjj Triangle Count
Djjj Out-Degree
Djjj In-Degree
Djjj k-Core
Djjj Graph Coloring j

@t Qo
Djjj PageRank

Classification method: Gradient Boosted Trees
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Graph Structure Features

1 Relation,

8 Feature types 01870008 Ho0s s
10 Relations, 0.285 £ 0.002 0.809 +0.001
1 Feature type
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8 Feature types
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Our Approach

Predict spammers based on:
m Graph structure
m Action sequences

m Reporting behavior




Sequence of Actions

= Sequential Bigram Features:
Short sequence segment of 2 consecutive actions,
to capture sequential information

Userl Actions:

Message, Profile_view, Message, Friend _Request, ....

\ J
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Sequence of Actions

m Mixture of Markov Models (MMM):
A.k.a. chain-augmented, tree-augmented naive Bayes




Sequence of Actions
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Sequence of Actions

Bigram Features 0.471 +0.004 0.859 +0.001
MMM 0.246 +0.009 0.821 +0.003
Bigram + MMM 0.468 +0.012 0.860 +0.002

Little benefit from MMM (although little overhead)



Results

Precision-Recall

ROC
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— Complete Framework
— Sequence Features

— Graph Features
— Seq. & Graph Feat.

We can classify 70% of the spammers that need manual labeling

with about 90% accuracy




Deployment and Example Runtimes

m We can:

Run the model on short intervals, with new snapshots
of the network

Update the features as events occur

mExample runtimes with Graphlab Create™ on a
Macbook Pro:
5.6 million vertices and 350 million edges:
PageRank: 6.25 minutes
Triangle counting: 17.98 minutes
k-core: 14.3 minutes



Our Approach

Predict spammers based on:
m Graph structure

m Action sequences

t__-» | by R
- ’\f@
m Reporting behavior - <




Refining the abuse reporting systems

m Abuse report systems are very noisy
People have different standards
Spammers report random people to increase noise
Personal gain in social games

m Goal is to clean up the system using:
Reporters’ previous history
Collective reasoning over reports



Collective Classification with Reports

Probabilistic Soft Logic

CREDIBLE(v1) A REPORTED (v1,v2) — SPAMMER(v2)

SPAMMER (v2) A REPORTED(v1,v2) — CREDIBLE(v1)

—~SPAMMER (v2) A REPORTED(v1,v2) —+—CREDIBLE(v1)
PRIOR-CREDIBLE(v) — CREDIBLE(v)
—PRIOR-CREDIBLE(v) ——CREDIBLE(v)
—~SPAMMER(v)

—_~ = =~ =~




HL-MRF's & Probabilistic Soft Logic
(PSL)

* Probabilistic Soft Logic (PSL), a declarative modeling
language based on first-order logic

* Weighted logical rules define a probabilistic
graphical model:

w: P(A,B)AQ(B,C) — R(A,C)

* Instantiated rules reduce the probability of any state
that does not satisfy the rule, as measured by its
distance to satisfaction



Collective Classification with Reports

m Model using only reports:

REPORTED(Ul,UQ) — SPAMMER(’UQ)
~SPAMMER(v)
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Collective Classification with Reports

m Model using reports, credibility of the reporter,
and collective reasoning:

CREDIBLE(v1) A REPORTED(v1,v2) — SPAMMER(v2)

SPAMMER(vs) A REPORTED(v1,v2) — CREDIBLE(v1)

~SPAMMER(v2) A REPORTED(v1,v3) ——CREDIBLE(v1)
PRIOR-CREDIBLE(v) — CREDIBLE(v)
~PRIOR-CREDIBLE(v) ——CREDIBLE(v)
~SPAMMER(v)
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Code and part of the data will be released soon:
https://github.com/shobeir/fakhraei_kdd2015
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